

Computer Science and Biology

Computer Science and Biology

Protein Folding

Primary structure

(linear sequence of amino acids)

Tertiary structure

(3-dimensional shape)

Protein Folding

Primary structure

(linear sequence of amino acids)

Tertiary structure

(3-dimensional shape)

● Deep neural network for predicting protein structure

● AlphaFold 1 placed #1 in CASP (Critical Assessment
of Structure Prediction) competition in 2018

● AlphaFold 2 placed #1 in CASP competition in 2020

● Predicted protein structures were > 90% accurate
in comparison to lab-determined protein structures

AlphaFold

● Deep neural network for predicting protein structure

● AlphaFold 1 placed #1 in CASP (Critical Assessment
of Structure Prediction) competition in 2018

● AlphaFold 2 placed #1 in CASP competition in 2020

● Predicted protein structures were > 90% accurate
in comparison to lab-determined protein structures

AlphaFold

AlphaFold

AlphaFold

AlphaFold

AlphaFold

AlphaFold

AlphaFold

Genetic Algorithms

Genetic Algorithms

Genetic Algorithms

● A collection of strings – “genomes”

000011101001100
100110100110100110010011110011

00000100100010111101011111101

000010000101011

101001101010101

110100100010001

Genetic Algorithms

● A collection of strings – “genomes”

000011101001100
100110100110100110010011110011

00000100100010111101011111101

000010000101011

101001101010101

110100100010001

Genetic Algorithms

● A collection of strings – “genomes”

● A “fitness function” – rates strings according to some criteria

100110100110100

f () = 12

f () = 5

f () = 9

f () = 6

f () = 3

f () = 6

f () = 8

f () = 7110010011110011

000011101001100

00000100100010111101011111101

000010000101011

101001101010101

110100100010001

Genetic Algorithms

● A collection of strings – “genomes”

● A “fitness function” – rates strings according to some criteria

100110100110100

f () = 12

f () = 5

f () = 9

f () = 6

f () = 3

f () = 6

f () = 8

f () = 7110010011110011

000011101001100

00000100100010111101011111101

000010000101011

101001101010101

110100100010001

Genetic Algorithms

● A collection of strings – “genomes”

● A “fitness function” – rates strings according to some criteria

● Survival of the fittest – “selection”

f () = 5

f () = 9

f () = 6

f () = 3

f () = 6

f () = 8

f () = 7

f () = 12

110010011110011

000011101001100
100110100110100

00000100100010111101011111101

000010000101011

101001101010101

110100100010001

Genetic Algorithms

● A collection of strings – “genomes”

● A “fitness function” – rates strings according to some criteria

● Survival of the fittest – “selection”

f () = 5

f () = 9

f () = 6

f () = 3

f () = 6

f () = 8

f () = 7

f () = 12

110010011110011

000011101001100
100110100110100

00000100100010111101011111101

000010000101011

101001101010101

110100100010001

Genetic Algorithms

● A collection of strings – “genomes”

● A “fitness function” – rates strings according to some criteria

● Survival of the fittest – “selection”

● Genetic recombination – “crossover”

100110100110100

111101011111101

100111011111101

111100100110100

Genetic Algorithms

● A collection of strings – “genomes”

● A “fitness function” – rates strings according to some criteria

● Survival of the fittest – “selection”

● Genetic recombination – “crossover”

100110100110100

111101011111101

100111011111101

111100100110100

Genetic Algorithms

● A collection of strings – “genomes”

● A “fitness function” – rates strings according to some criteria

● Survival of the fittest – “selection”

● Genetic recombination – “crossover”

● Random variation – “mutation”

100111111111111

011100100110100

100111011111101

111100100110100

Genetic Algorithms

● A collection of strings – “genomes”

● A “fitness function” – rates strings according to some criteria

● Survival of the fittest – “selection”

● Genetic recombination – “crossover”

● Random variation – “mutation”

100111111111111

011100100110100

100111011111101

111100100110100

Outline of a Genetic Algorithm
1. Create a population of random genomes

2. Evaluate the fitness of each genome in the population

3. Build a new population of genomes:

(a) select 2 genomes probabilistically, based on fitness
(b) create 2 new offspring from them, using crossover
(c) mutate each offspring with some small probability
(d) add the offspring to the new population

4. When the new population has reached the same size as
 the current population, replace the current population by
 the new population … and repeat

 continue steps (a) - (d)

Outline of a Genetic Algorithm
1. Create a population of random genomes

2. Evaluate the fitness of each genome in the population

3. Build a new population of genomes:

(a) select 2 genomes probabilistically, based on fitness
(b) create 2 new offspring from them, using crossover
(c) mutate each offspring with some small probability
(d) add the offspring to the new population

4. When the new population has reached the same size as
 the current population, replace the current population by
 the new population … and repeat

 continue steps (a) - (d)

Outline of a Genetic Algorithm

● The average fitness of the population will increase over time

● Even the best-fit individuals are not guaranteed to survive to
the next generation

● Even the worst-fit individuals have some (small) probability
of surviving

● Some GAs use elitism to ensure that the top individuals
are not lost

Outline of a Genetic Algorithm

● The average fitness of the population will increase over time

● Even the best-fit individuals are not guaranteed to survive to
the next generation

● Even the worst-fit individuals have some (small) probability
of surviving

● Some GAs use elitism to ensure that the top individuals
are not lost

A Simple Example

Average fitness of current population = 12 / 4 = 3.0

 Genome Fitness New population

A: 00000110 2
B: 11101110 6
C: 00100000 1
D: 00110100 3

A Simple Example

Average fitness of current population = 12 / 4 = 3.0

 Genome Fitness New population

A: 00000110 2
B: 11101110 6
C: 00100000 1
D: 00110100 3

A Simple Example

B: 11101110 and C: 00100000 are selected

 Genome Fitness New population

A: 00000110 2
B: 11101110 6
C: 00100000 1
D: 00110100 3

A Simple Example

B: 11101110 and C: 00100000 are selected

 Genome Fitness New population

A: 00000110 2
B: 11101110 6
C: 00100000 1
D: 00110100 3

A Simple Example

 Genome Fitness New population

A: 00000110 2 E: 01101110
B: 11101110 6 C: 00100000
C: 00100000 1
D: 00110100 3

B: 11101110 E: 01101110

C: 00100000

No crossover B is mutated

→

A Simple Example

 Genome Fitness New population

A: 00000110 2 E: 01101110
B: 11101110 6 C: 00100000
C: 00100000 1
D: 00110100 3

B: 11101110 E: 01101110

C: 00100000

No crossover B is mutated

→

A Simple Example

B: 11101110 and D: 00110100 are selected

 Genome Fitness New population

A: 00000110 2 E: 01101110
B: 11101110 6 C: 00100000
C: 00100000 1
D: 00110100 3

A Simple Example

B: 11101110 and D: 00110100 are selected

 Genome Fitness New population

A: 00000110 2 E: 01101110
B: 11101110 6 C: 00100000
C: 00100000 1
D: 00110100 3

A Simple Example

F is mutated

F: 10110100 H: 10110000

G: 01101110

 Genome Fitness New population

A: 00000110 2 E: 01101110
B: 11101110 6 C: 00100000
C: 00100000 1 H: 10110000
D: 00110100 3 G: 01101110

Crossover occurs

B: 11101110

D: 00110100

→

A Simple Example

F is mutated

F: 10110100 H: 10110000

G: 01101110

 Genome Fitness New population

A: 00000110 2 E: 01101110
B: 11101110 6 C: 00100000
C: 00100000 1 H: 10110000
D: 00110100 3 G: 01101110

Crossover occurs

B: 11101110

D: 00110100

→

A Simple Example

 Genome Fitness New population Fitness

A: 00000110 2 E: 01101110 5
B: 11101110 6 C: 00100000 1
C: 00100000 1 H: 10110000 3
D: 00110100 3 G: 01101110 5

 Average fitness of new population = 14 / 4 = 3.5

Best-fit genome from previous population was lost

A Simple Example

 Genome Fitness New population Fitness

A: 00000110 2 E: 01101110 5
B: 11101110 6 C: 00100000 1
C: 00100000 1 H: 10110000 3
D: 00110100 3 G: 01101110 5

 Average fitness of new population = 14 / 4 = 3.5

Best-fit genome from previous population was lost

Evolving an English Phrase

● Genome
a sequence of letters representing an English phrase

● Fitness function
the number of letters in the genome that match
“the rain in spain stays mainly in the plain”

● Example
“the yain in szbin stays mainly ik the ploin”
fitness = 38

● GA parameters
population size: 100
crossover probability: 0.75
mutation probability: 0.005 per letter

Evolving an English Phrase

● Genome
a sequence of letters representing an English phrase

● Fitness function
the number of letters in the genome that match
“the rain in spain stays mainly in the plain”

● Example
“the yain in szbin stays mainly ik the ploin”
fitness = 38

● GA parameters
population size: 100
crossover probability: 0.75
mutation probability: 0.005 per letter

Demo

Demo

Evolving Virtual Creatures

● An interesting application of GAs by Karl Sims (1994)

Evolving Virtual Creatures

● An interesting application of GAs by Karl Sims (1994)

Evolving Virtual Creatures

● Virtual creatures move around in a 3-D simulated world
● Creatures' bodies are rectangular blocks connected by

movable joints, with sensors for light and proprioception
● Creatures' brains are complex neural networks

Evolving Virtual Creatures

● Virtual creatures move around in a 3-D simulated world
● Creatures' bodies are rectangular blocks connected by

movable joints, with sensors for light and proprioception
● Creatures' brains are complex neural networks

Evolving Virtual Creatures

● A genome is a set of nodes and links that encode a creature's
body structure and brain structure

● Complex genotype → phenotype mapping

● Brains and bodies co-evolve together
– Body structure evolves
– Brain structure evolves (neural network topology)
– Brain parameters evolve (neural network weights)

● Fitness: how well a creature can swim, walk, jump, follow
a light source, or compete for control of a block

Evolving Virtual Creatures

● A genome is a set of nodes and links that encode a creature's
body structure and brain structure

● Complex genotype → phenotype mapping

● Brains and bodies co-evolve together
– Body structure evolves
– Brain structure evolves (neural network topology)
– Brain parameters evolve (neural network weights)

● Fitness: how well a creature can swim, walk, jump, follow
a light source, or compete for control of a block

Genetic Encoding of Body and Brain

segment

body segment

leg segment

head

body

limb segment

Genetic Encoding of Body and Brain

segment

body segment

leg segment

head

body

limb segment

Genetic Encoding of Body and Brain

Genetic Encoding of Body and Brain

Genetic Recombination

Crossover Grafting

Genetic Recombination

Crossover Grafting

The Genetic Algorithm

● Population size: 300 genomes

● Evolved for 100 generations

● Fitness evaluation:

genetic description → creature → 3-D simulation

fitness = distance creature walks / swims / jumps / etc.
 in a fixed amount of simulation time

● Virtual 3-D world simulates effects of gravity, friction, viscosity

The Genetic Algorithm

● Population size: 300 genomes

● Evolved for 100 generations

● Fitness evaluation:

genetic description → creature → 3-D simulation

fitness = distance creature walks / swims / jumps / etc.
 in a fixed amount of simulation time

● Virtual 3-D world simulates effects of gravity, friction, viscosity

Results: Swimmers

Results: Swimmers

Results: Walkers

Results: Walkers

Results: Jumpers

Results: Jumpers

Results: Light Followers

Results: Light Followers

Results: Competitors

Results: Competitors

Video

Video

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

