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● Deep neural network for predicting protein structure

● AlphaFold 1 placed #1 in CASP (Critical Assessment 
of Structure Prediction) competition in 2018

● AlphaFold 2 placed #1 in CASP competition in 2020

● Predicted protein structures were > 90% accurate
in comparison to lab-determined protein structures
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Outline of a Genetic Algorithm
1. Create a population of random genomes

2. Evaluate the fitness of each genome in the population

3. Build a new population of genomes:

(a) select 2 genomes probabilistically, based on fitness
(b) create 2 new offspring from them, using crossover
(c) mutate each offspring with some small probability
(d) add the offspring to the new population

4. When the new population has reached the same size as
  the current population, replace the current population by
  the new population  … and repeat 

     continue steps (a) - (d)
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Outline of a Genetic Algorithm

● The average fitness of the population will increase over time

● Even the best-fit individuals are not guaranteed to survive to 
the next generation

● Even the worst-fit individuals have some (small) probability
of surviving

● Some GAs use elitism to ensure that the top individuals
are not lost
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A Simple Example

Average fitness of current population = 12 / 4 = 3.0

    Genome Fitness New population

A:  00000110 2
B:  11101110 6
C:  00100000 1
D:  00110100 3
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A Simple Example

    Genome Fitness New population Fitness

A:  00000110 2 E:  01101110 5
B:  11101110 6 C:  00100000 1
C:  00100000 1 H:  10110000 3
D:  00110100 3 G:  01101110 5

  Average fitness of new population = 14 / 4 = 3.5

Best-fit genome from previous population was lost
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Evolving an English Phrase

● Genome
a sequence of letters representing an English phrase

● Fitness function
the number of letters in the genome that match
“the rain in spain stays mainly in the plain” 

● Example
“the yain in szbin stays mainly ik the ploin”
fitness = 38

● GA parameters
population size:  100
crossover probability: 0.75
mutation probability:  0.005 per letter
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Evolving Virtual Creatures

● An interesting application of GAs by Karl Sims (1994)
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Evolving Virtual Creatures

● Virtual creatures move around in a 3-D simulated world
● Creatures' bodies are rectangular blocks connected by 

movable joints, with sensors for light and proprioception
● Creatures' brains are complex neural networks
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Evolving Virtual Creatures

● A genome is a set of nodes and links that encode a creature's 
body structure and brain structure

● Complex genotype → phenotype mapping

● Brains and bodies co-evolve together
– Body structure evolves
– Brain structure evolves (neural network topology)
– Brain parameters evolve (neural network weights)

● Fitness: how well a creature can swim, walk, jump, follow
a light source, or compete for control of a block
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Genetic Encoding of Body and Brain
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The Genetic Algorithm

● Population size: 300 genomes

● Evolved for 100 generations

● Fitness evaluation:

genetic description → creature → 3-D simulation

fitness = distance creature walks / swims / jumps / etc.
              in a fixed amount of simulation time

● Virtual 3-D world simulates effects of gravity, friction, viscosity
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Results: Swimmers
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