TNT Rules

Specification: remove $\forall x$: and replace x with any term you like from $\forall \mathrm{a}:(\mathrm{a} \cdot 0)=0$ make $(\mathrm{SSS} 0 \cdot 0)=0$ or $(a \cdot 0)=0$ or $((\mathrm{Sb}+\mathrm{a}) \cdot 0)=0$

Generalization: add $\forall \mathrm{x}$: to a string when x is a free variable in it from $\mathrm{a}=0$ make $\forall \mathrm{a}: \mathrm{a}=0 \quad$ (can't always do this inside a fantasy)

Interchange: $\forall x: \sim ~ a n d ~ \sim \exists x$: are interchangeable from $\sim \exists \mathrm{a}:(\mathrm{a}+0)=\mathrm{Sa}$ make $\forall \mathrm{a}: \sim(\mathrm{a}+0)=\mathrm{Sa}$

Existence: replace any term in a string by x and add $\exists \mathrm{x}$:
from (SO+SO)=SSO make $\exists \mathrm{a}:(\mathrm{SO}+\mathrm{a})=\mathrm{SSO}$ or $\exists \mathrm{b}: \mathrm{b}=\mathrm{SSO}$

TNT Rules

Symmetry: if $r=s$ is a theorem, so is $s=r$
from $(\mathrm{SO} 0+\mathrm{SO})=\mathrm{SS} 0$ make $\mathrm{SSO}=(\mathrm{SO} 0+\mathrm{SO})$

Transitivity: if $r=s$ and $s=t$ are theorems, so is $r=t$
from $S(0+0)=(0+S 0)$ and $(0+S 0)=S 0$ make $S(0+0)=S 0$

Add S: if $r=t$ is a theorem, so is $\mathrm{Sr}=\mathrm{St}$ from $\mathrm{SO}=0$ make $\mathrm{SSO}=\mathrm{SO}$

Drop S: if $\mathrm{Sr}=\mathrm{St}$ is a theorem, so is $\mathrm{r}=\mathrm{t}$
from $S(0+0)=S 0$ make $(0+0)=0$

