Logical Paradoxes

- Epimenides paradox: "This statement is false"
- Russell's paradox
 - Sets are collections of things

 $\{ \underbrace{1}, \underbrace{2}, \text{"apple"} \} \{ 1, 5, 42 \} \}$

- A set is also a **thing** in its own right, so sets can contain other sets
 - { 37, 0, **{ 1, 5, 42 }**, 19, **{ }**, 88 }
- A set can even contain itself (Example: the set of all sets)
- R: the set of all sets that don't contain themselves
- Does R contain itself?
 - No? Then it **must** contain R, by definition!
 - Yes? Then it **can't** contain R, by definition!

The Theory of Types

- Objects:

 Weight apple
 Cobjects:

 (apple)
 (app
- ... and so on ...
- No self-reference (or self-membership) allowed!

Logical Paradoxes

- Barber paradox
 - The town of Smoothville has just one barber
 - Nobody in this town has a beard
 - Every man either shaves himself, or goes to the barber
 - The barber shaves only men who don't shave themselves
- Who shaves the barber?
 - He can't shave himself, because he only shaves men who don't shave themselves
 - He can't let the barber do it, because he's the barber
- Too contrived to really be a genuine paradox

Logical Paradoxes

- Berry paradox
 - Some positive numbers can be described in a single word:
 "zero", "nine", "eighty", etc.
 - Many can be described in eleven words or less:
 "two hundred", "a googol", "the product of five and six",
 "the smallest prime", "the number halfway between fifty and a hundred"
 - The number of phrases of eleven words or less is finite
 - So there must be many, many positive numbers that cannot be described in eleven words or less
 - Of these, which one is the smallest?
 - "the smallest positive number not describable in eleven words or less"