Logical Paradoxes

- Epimenides paradox: "This statement is false"
- Russell's paradox
- Sets are collections of things $\{\circlearrowleft, \mathcal{M}$,"apple" $\} \quad\{1,5,42\} \quad\}$
- A set is also a thing in its own right, so sets can contain other sets
$\{37,0,\{1,5,42\}, 19,\{ \}, 88\}$
- A set can even contain itself (Example: the set of all sets)
- R: the set of all sets that don't contain themselves
- Does R contain itself?

No? Then it must contain R, by definition!
Yes? Then it can't contain R, by definition!

The Theory of Types

- Objects:
- Level 1 sets: $\quad\{, 42$, "apple" $\} \quad\{1,2,3\} \quad\}$
- Level 2 sets: $\{$ "apple", $\{1,2,3\}\} \quad,\{\}\}$
- Level 3 sets: $\{42,\{\{ \}\}$, $\{$ "apple", $\{1,2,3\}\}$,
- ... and so on ...
- No self-reference (or self-membership) allowed!

Logical Paradoxes

- Barber paradox
- The town of Smoothville has just one barber
- Nobody in this town has a beard
- Every man either shaves himself, or goes to the barber
- The barber shaves only men who don't shave themselves
- Who shaves the barber?
- He can't shave himself, because he only shaves men who don't shave themselves
- He can't let the barber do it, because he's the barber
- Too contrived to really be a genuine paradox

Logical Paradoxes

- Berry paradox
- Some positive numbers can be described in a single word: "zero", "nine", "eighty", etc.
- Many can be described in eleven words or less:
"two hundred", "a googol", "the product of five and six", "the smallest prime", "the number halfway between fifty and a hundred"
- The number of phrases of eleven words or less is finite
- So there must be many, many positive numbers that cannot be described in eleven words or less
- Of these, which one is the smallest?
- "the smallest positive number not describable in eleven words or less"

