Formalized Number Theory

- Statements of formalized number theory refer to numbers
"6 is even"
" 6 is odd"
" $b \geq 3$ "
" b is prime"
" b is a power of 2 "
"there are infinitely many prime numbers"

$$
\forall \mathrm{d}: \exists \mathrm{e}: \sim \exists \mathrm{b}: \exists \mathrm{c}:(\mathrm{d}+\mathrm{Se})=(\mathrm{SSb} \cdot \mathrm{SSc})
$$

"1729 is expressible as the sum of two cubes"
etc...

Formalized Number Theory

- Statements of formalized number theory refer to numbers
- How could a statement possibly refer to another statement?
- Answer: by assigning a code number to every statement!
- This number is called the statement's Gödel number
- Via Gödel numbering, a mathematical statement can refer to another mathematical statement "in code" or even to itself!

Formalized Number Theory

- This was Gödel's stroke of genius
- "Axioms" and "theorems" are really just numbers in disguise
- Deriving new theorems from old theorems by applying the formal system's "rules" is really just computing new numbers from old numbers using complex arithmetical operations
- These operations on numbers can themselves be described in the formalized language of number theory

Gödel's Method

- Epimenides paradox:
- "I am lying"
- "This statement is false"
- Gödel's construction:
- "This statement is unprovable"

- "The number N cannot be derived using the system's rules" where N is the Gödel number of that very statement
- What if we could derive it using the system's rules? It would be false, so the system would be inconsistent
- What if we could not derive it using the system's rules? It would be true, so the system would be incomplete

Gödel's Incompleteness Theorem

All consistent axiomatic formalizations of mathematics are incomplete

- For any formal mathematical system capable of representing the natural numbers, there exist true statements that can never be proved by the system

- Provability is a weaker notion than truth

Gödel-Numbering the MIU-System

Rules:

1. From x I make x IU
2. From Mx make M $x x$
3. Replace III by U
4. Drop UU

Encoding Scheme:

Axiom:
MI

$$
\begin{aligned}
\mathbf{M} & =3 \\
\mathbf{I} & =1 \\
\mathbf{U} & =0
\end{aligned}
$$

Derivation:

MI	axiom	31
MII	rule 2	311
MIIII	rule 2	31111
MIIIIU	rule 1	311110
MIUU	rule 3	3100

Gödel-Numbering the MIU-System

We can now rephrase statements about the MIU-system as statements about numbers!

- "MIUU is a theorem of the MIU-system"
= "3100 is a MIU-number"
- "MU is not a theorem of the MIU-system"
= "30 is not a MIU-number"

TNT String

$\ll \sim \mathbf{b}=\mathbf{0} \wedge \sim \mathbf{b}=\mathbf{S O} \boldsymbol{>} \wedge \sim \mathcal{\sim}: \exists \mathrm{d}:(\mathbf{S S c} \cdot \mathbf{S S d})=\mathrm{b}>\quad$ " b is a prime number"
a much more complicated string of TNT
above string with \mathbf{b} replaced by $\underbrace{\text { SSSSSSS...S0 }}_{30 \mathbf{S}^{\prime} \mathbf{s}}$
an insanely complicated string of TNT

Interpretation

" b is a MIU-number"
" b is a theorem of the MIU-system"
" 30 is a MIU-number" (MUMON)
"MU is a theorem of the MIU-system"
" b is a TNT-number"
" b is a theorem of the TNT-system"
" b is a true statement about numbers"
$(\mathbf{S} 0+\mathbf{O})=\mathbf{S} \mathbf{O}$
362,123,666,112,123,666,323,111,123,123,666
S $0=0$
123,666,111,666
a "true" number
a "false" number

TNT String

Interpretation

$(\mathbf{S O}+\mathbf{O} \mathbf{0})=\mathbf{S} \mathbf{0}$
$362,123,666,112,123,666,323,111,123,123,666$ a "true" number

S $0=0$
123,666,111,666
~ statement about the number 123,666,111,666
~ statement about the number G
(where $G=$ the Gödel number of the above string)
a "false" number
" $123,666,111,666$ is not a TNT-number" " $\mathbf{S O = 0}$ is not derivable in TNT" " $\mathbf{S O} \mathbf{0} \mathbf{0}$ is not a theorem of TNT"
" G is not a TNT-number" "this string is not derivable in TNT" "this string is not a theorem of TNT"

TNT String

Interpretation

$(\mathbf{S} \mathbf{0}+\mathbf{S} \mathbf{0})=\mathbf{S} \mathbf{S} \mathbf{0}$
362,123,666,112,123,666,323,111,123,123,666 a "true" number

S $0=0$
123,666,111,666
~ statement about the number $123,666,111,666$
\sim statement about the number G
(where $G=$ the Gödel number of the above string)

What if it could be derived?
What if it could not be derived?
What if its negation could be derived?
a "false" number
" $123,666,111,666$ is not a TNT-number" " $\mathbf{S O = 0}$ is not derivable in TNT" " $\mathbf{S O} \mathbf{0} \mathbf{0}$ is not a theorem of TNT"
" G is not a TNT-number" "this string is not derivable in TNT" "this string is not a theorem of TNT"

Then it would be false!
Then it would be true!
Then its negation would be false!

