Question:

Can we capture the concept of primality in a set of formal rules?

Why is 12 composite?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

Why is 12 composite?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

2 divides 12

Why is 12 composite?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

3 divides 12

Why is 12 composite?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

4 divides 12

Why is 12 composite?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

6 divides 12

Why is 11 prime?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

2 does not divide 11

Why is 11 prime?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

3 does not divide 11

Why is 11 prime?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

4 does not divide 11

Why is 11 prime?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

5 does not divide 11

Why is 11 prime?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

6 does not divide 11

Why is 11 prime?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

7 does not divide 11

Why is 11 prime?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

8 does not divide 11

Why is 11 prime?

$\begin{array}{lllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

9 does not divide 11

Why is 11 prime?

$\begin{array}{llllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$

10 does not divide 11

Bigger numbers do not divide smaller numbers

12 does not divide 11

12 does not divide 6

3 does not divide 1
3 does not divide 2
15 does not divide 5
etc...

If \boldsymbol{x} does not divide \boldsymbol{y}, then \boldsymbol{x} does not divide $\boldsymbol{x}+\boldsymbol{y}$ either

3 does not divide 1 , so it doesn't divide 4
3 does not divide 4, so it doesn't divide 7
3 does not divide 7, so it doesn't divide 10
3 does not divide 10, so it doesn't divide 13
etc...

\boldsymbol{n} is divisor free up to \boldsymbol{x}

25 is divisor free up to 4
$2345678910111213 \ldots 2425$
49 is divisor free up to 6
$2345678910111213 \ldots 4849$
11 is divisor free up to 10
234567891011

If \boldsymbol{n} is divisor free up to $\boldsymbol{n} \boldsymbol{- 1}$, then \boldsymbol{n} is prime

11 is divisor free up to 10 , so 11 is prime
234567891011

17 is divisor free up to 16 , so 17 is prime
234567891011121314151617

The DND-system

Bigger numbers do not divide smaller numbers

Axiom Schema: xyDNDx

where \boldsymbol{x} and \boldsymbol{y} are hyphen-strings
--DND-
2 does not divide 1
---DND-
----DND---
-----DND--
3 does not divide 1
4 does not divide 3
5 does not divide 2
etc...

If \boldsymbol{x} does not divide \boldsymbol{y}, then \boldsymbol{x} does not divide $\boldsymbol{x} \boldsymbol{y} \boldsymbol{y}$ either

Rule: If x DND y is a theorem, so is x DND $x y$
$\begin{array}{lll}\text {---DND- } & \text { (axiom) } & 3 \text { does not divide } 1 \\ \text {---DND---- } & & 3 \text { does not divide } 4 \\ \text {---DND------ } & 3 \text { does not divide } 7 \\ \text {---DND---------- } & 3 \text { does not divide } 10\end{array}$ etc...
----DND--
(axiom) 4 does not divide 2
----DND-----4 does not divide 6 etc...

If 2 does not divide n, then n is divisor free up to 2

Rule: If $-=$ DND n is a theorem, so is $n \mathrm{DF}--$

$$
\begin{aligned}
& \text {--DND- } \\
& \text {--DND--- } \\
& ---D F--
\end{aligned}
$$

(axiom) 2 does not divide 1
2 does not divide 3
3 is divisor free up to 2
2 does not divide 5 5 is divisor free up to 2
--DND---------
---------DF--

If \boldsymbol{n} is divisor free up to \boldsymbol{x}, and $\boldsymbol{x + 1}$ does not divide \boldsymbol{n}, then n is divisor free up to $\boldsymbol{x + 1}$

Rule: If $\boldsymbol{n D F} \boldsymbol{x}$ and \boldsymbol{x}-DND \boldsymbol{n} are both theorems, so is n DF $x-$

$$
\begin{aligned}
& \text {-----DF-- } \\
& \text {---DND----- } \\
& \text {----DF--- }
\end{aligned}
$$

----DND-----
-----DF----

5 is divisor free up to 2
3 does not divide 5
5 is divisor free up to 3
4 does not divide 5
5 is divisor free up to 4

If \boldsymbol{n} is divisor free up to $\boldsymbol{n} \boldsymbol{- 1}$, then \boldsymbol{n} is prime

Rule: If $z-\mathrm{DFz}$ is a theorem, so is $\mathrm{P} z-$
---DF--
P---
-----DF----
P-----

Axiom: P--

3 is divisor free up to 2 3 is prime

5 is divisor free up to 4 5 is prime

2 is prime

Answer:

Yes, the prime numbers can be mechanically generated by a set of formal rules!

