Turing Machines - Part 2

EXTRA CREDIT (optional)

Due by class time Friday, April 7

1. Modify your machine which scans for $\mathbf{x x}$ (from Exercise \#13 of the previous worksheet) so that it scans until it finds three \mathbf{x} 's in a row. When it finds a group of three consecutive \mathbf{x} 's, it should halt. For an added touch, have the machine move back to the first of the three $\mathbf{x ' s}$ and halt there. Make sure your machine works for any block of 0 's, 1 's, and \mathbf{x} 's, such as $0011 \times 01 \times x 1011 \times 111 \times x 00 \times x \times 00$.
2. Try out the machine Decimal Add1 in other-TMs.txt. This machine takes a string of digits as input, representing a number in decimal (base 10) notation, and adds 1 to the number, performing any carries as needed. For example, $\mathbf{1 9}$ gets transformed to $\mathbf{2 0}$, and 999 gets transformed to $\mathbf{1 0 0 0}$. Try a few other inputs as well. We can easily transform this machine into a decimal "counter" by modifying the last rule so that, instead of halting after adding 1 , it returns to the starting state $s 1$. Modify the rule in this way and then observe the behavior of the machine on the input $\mathbf{0}$.
3. The machine Binary Add1 is just like Decimal Add1, except that it adds 1 to a number written in binary (base 2) notation. For example, 11 (the binary representation of 3) gets transformed to $\mathbf{1 0 0}$ (the binary representation of 4), and 1111 (15) gets transformed to $\mathbf{1 0 0 0 0}$ (16). Try out a few other inputs as well. We can turn this machine into a binary "counter" in the same way as before, by having the machine return to state $s l$ instead of halting. Modify the machine in this way and then run it on the input $\mathbf{0}$.
4. Construct a Turing machine to do the following. Assume that the machine is started on a tape that contains nothing but a string of $\$ \mathbf{\prime}$. The machine is started on the left end of this string. The purpose of the machine is to multiply the length of the string by 3 . For example, if given a string of seven $\$$'s, it should halt with twenty-one $\$$'s on the tape. If it is started on a string that contains just one $\$$, it should halt with three $\$ \mathbf{\prime}$ s on the tape. Here is one possible way (but not the only way!) that the machine might accomplish this task: Change one of the $\$$'s to an \mathbf{x}, then go to the end of the string and write two more \mathbf{x} 's. Go back and process the next $\$$ in the same way. Continue until all the $\$$'s have been processed. Then change all the x's to $\$ \mathbf{}$ s.
