
Turing Machines – Part 2

EXTRA CREDIT (optional)

Due by class time Friday, April 7

1. Modify your machine which scans for xx (from Exercise #13 of the previous worksheet) so that it scans until it 
finds three x's in a row.  When it finds a group of three consecutive x's, it should halt.  For an added touch, have 
the machine move back to the first of the three x's and halt there. Make sure your machine works for any block of 
0's, 1's, and x's, such as 0011x01xx1011x111xx00xxx00.

2. Try out the machine Decimal Add1 in other-TMs.txt.  This machine takes a string of digits as input, representing 
a number in decimal (base 10) notation, and adds 1 to the number, performing any carries as needed.   For 
example, 19 gets transformed to 20, and 999 gets transformed to 1000.  Try a few other inputs as well.  We can 
easily transform this machine into a decimal “counter” by modifying the last rule so that, instead of halting after 
adding 1, it returns to the starting state s1.  Modify the rule in this way and then observe the behavior of the 
machine on the input 0.

3. The machine Binary Add1 is just like Decimal Add1, except that it adds 1 to a number written in binary (base 2) 
notation.  For example, 11 (the binary representation of 3) gets transformed to 100 (the binary representation of 4),
and 1111 (15) gets transformed to 10000 (16).  Try out a few other inputs as well.  We can turn this machine into a
binary “counter” in the same way as before, by having the machine return to state s1 instead of halting. Modify 
the machine in this way and then run it on the input 0.

4. Construct a Turing machine to do the following.  Assume that the machine is started on a tape that contains 
nothing but a string of $'s.  The machine is started on the left end of this string.  The purpose of the machine is to 
multiply the length of the string by 3.  For example, if given a string of seven $'s, it should halt with twenty-one 
$'s on the tape.  If it is started on a string that contains just one $, it should halt with three $'s on the tape.  Here is 
one possible way (but not the only way!) that the machine might accomplish this task: Change one of the $'s to an 
x, then go to the end of the string and write two more x's.  Go back and process the next $ in the same way. 
Continue until all the $'s have been processed.  Then change all the x's to $'s.

Turing Machines – Part 2

EXTRA CREDIT (optional)

Due by class time Friday, April 7

1. Modify your machine which scans for xx (from Exercise #13 of the previous worksheet) so that it scans until it 
finds three x's in a row.  When it finds a group of three consecutive x's, it should halt.  For an added touch, have 
the machine move back to the first of the three x's and halt there. Make sure your machine works for any block of 
0's, 1's, and x's, such as 0011x01xx1011x111xx00xxx00.

2. Try out the machine Decimal Add1 in other-TMs.txt.  This machine takes a string of digits as input, representing 
a number in decimal (base 10) notation, and adds 1 to the number, performing any carries as needed.   For 
example, 19 gets transformed to 20, and 999 gets transformed to 1000.  Try a few other inputs as well.  We can 
easily transform this machine into a decimal “counter” by modifying the last rule so that, instead of halting after 
adding 1, it returns to the starting state s1.  Modify the rule in this way and then observe the behavior of the 
machine on the input 0.

3. The machine Binary Add1 is just like Decimal Add1, except that it adds 1 to a number written in binary (base 2) 
notation.  For example, 11 (the binary representation of 3) gets transformed to 100 (the binary representation of 4),
and 1111 (15) gets transformed to 10000 (16).  Try out a few other inputs as well.  We can turn this machine into a
binary “counter” in the same way as before, by having the machine return to state s1 instead of halting. Modify 
the machine in this way and then run it on the input 0.

4. Construct a Turing machine to do the following.  Assume that the machine is started on a tape that contains 
nothing but a string of $'s.  The machine is started on the left end of this string.  The purpose of the machine is to 
multiply the length of the string by 3.  For example, if given a string of seven $'s, it should halt with twenty-one 
$'s on the tape.  If it is started on a string that contains just one $, it should halt with three $'s on the tape.  Here is 
one possible way (but not the only way!) that the machine might accomplish this task: Change one of the $'s to an 
x, then go to the end of the string and write two more x's.  Go back and process the next $ in the same way. 
Continue until all the $'s have been processed.  Then change all the x's to $'s.


