
Scheme Exercises

1. Define a procedure (cube n) that takes a number as input and computes its cube.

2. Define a procedure (sphere-volume radius) that takes the radius of a sphere as input and computes
its volume using the formula V = (4/3) π r3 where π is the value 3.14159.  Use your cube procedure from 
the previous exercise as a “helper” function.

3. According to the Joy of Cooking, candy syrups should be cooked 1 degree cooler than listed in the recipe for 
each 500 feet of elevation above sea level.  Define a procedure (candy-temp degrees elevation) 
that takes two values as input: the recipe's temperature in degrees and the elevation in feet.  It should 
calculate the temperature to use at that elevation.  The recipe for Chocolate Caramels calls for a temperature 
of 244 degrees; suppose you wanted to make them in Denver, the “mile high city”.  (One mile equals 5280 
feet.) Use your procedure to find the temperature for making the syrup.

4.  Candy thermometers are usually calibrated only in integer degrees, so it would be handy if your  candy-
temp procedure would give an answer rounded to the nearest degree. Rounding can be done using the 
predefined procedure called round. For example, (round 7/3) and (round 5/3) both evaluate to 
2. Insert an application of round at the appropriate place in your procedure definition and  test it again.

5. Remember the good old quadratic formula from high school math, which can be used to figure out the 
value of x in the equation ax2 + bx + c = 0?  Here it is:

Actually, there are always two values of x (called “roots”) that will satisfy the above equation.  The symbol 
+ in the formula means that you can calculate the first root by using addition in the formula and the second 
root by using subtraction.  Write a procedure (quadratic a b c) that takes the values a, b, and c as 
input and calculates the first root of the equation (the one using addition).  Remember that Scheme has a 
built-in procedure for computing square roots called sqrt.  Some examples are shown below:

> (quadratic 2 3 1)
-1/2
> (quadratic 5 6 2)
-3/5+1/5i

6. Define a procedure (absolute n) that takes a number n as input and returns its absolute value.  Use a 
cond expression to test whether n is less than zero, and if it is, return (- n).  Otherwise just return n.  Test
your procedure on several inputs to make sure it works.

7. The U.S. tax code uses what is called a marginal tax rate.  This policy means roughly that the tax rate used 
depends on the level of income.  For example, suppose that the first $10,000 of a person's income is not 
taxed at all, but the amount above $10,000 is taxed at 20 percent.  If you earned $12,500, the first $10,000 
would be untaxed, but the amount over $10,000, namely $2,500, would be taxed at 20 percent, yielding a  tax
bill of 20/100 × $2,500 = $500.  Write a procedure (tax income) that takes a person's income as input 
and calculates the tax using these assumptions.
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8. The next few exercises use the predefined graphics images shown below:

IMPORTANT: to use these images, you need to have installed the “concabs” library by following the 
instructions on our class web page.  You must also include the following line at the top of your code:

(require (lib "fungraph.ss" "concabs"))

Try evaluating the following expressions, which use the operations stack and quarter-turn-right 
to combine images into more complex images in various ways:

(stack rcross-bb corner-bb)

(quarter-turn-right test-bb)

(stack (stack rcross-bb corner-bb) test-bb)

(stack (stack rcross-bb corner-bb)
       (stack (quarter-turn-right test-bb) test-bb))

9. Define procedures half-turn and quarter-turn-left that do as their names suggest. Both 
procedures take a single argument, namely, the image to turn. You  will naturally need to use the built-in 
procedure quarter-turn-right.

10. Define a procedure side-by-side that takes two images as arguments and creates  a composite image 
having the first image on the left and the second image on  the right.  Hint: use the quarter-turn-left 
procedure you defined above to help you out.

11. We can construct a new image by joining together four  copies of a basic block, each facing a different way. 
We call this operation pinwheeling the basic block; here is an example of this operation performed on  the 
image test-bb:

Define the pinwheel procedure and use it to make a cross as shown below:

Now try pinwheeling the cross—you should get larger pattern reminiscent of a “quilt”, with four  dark 
crosses. If you pinwheel that, how big is the quilt you get? Try making other pinwheeled quilts in the same 
way, but using the other basic blocks. What do the designs look like?
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12. All five of the basic blocks can be produced using two primitive graphics  procedures.  The first of these, 
filled-triangle, takes six arguments, which are the x and y coordinates of the corners of the triangle 
that is to be filled in. The coordinate system runs from -1 to 1 in both dimensions. For example, here is the 
definition of test-bb:

(define test-bb (filled-triangle 0 1 0 -1 1 -1))

The second of these procedures, overlay, combines images. To understand how it works, imagine having 
two images on sheets of transparent plastic laid one on top of  the other so that you see the two images 
together. For example, here is the definition  of nova-bb, which is made out of two triangles:

(define nova-bb 
        (overlay (filled-triangle 0 1 0 0 -1/2 0) 
                 (filled-triangle 0 0 0 1/2 1 0)))

Use these primitive graphics procedures to define the other two basic blocks, rcross-bb and 
corner-bb.

13. Now that you know how it is done, be inventive. Come up with some basic blocks of your own and 
make pinwheeled quilts out of them. You might find it interesting to try experiments such as 
overlaying rotated versions of an image on one another.

14. The next few exercises give you practice with recursive procedures.  Using factorial as a guide, 
write a recursive procedure (power x n) that raises a number x to the power of n.  By definition, 
x raised to the power of 0 is 1.  For example, (power 2 0) should give 1, and (power 2 5) 
should give 32.  Hint: think about how you would compute the correct answer for  (power 2 5) if 
you knew that calling (power 2 4) would return 16.

15. Write a recursive procedure (sum-of-first n) that takes an input value n and adds up all of the
numbers from 1 to n.  For example, (sum-of-first 5) should give 1 + 2 + 3 + 4 + 5 = 15,
and (sum-of-first 100) should give 5050.  Hint: if you know that (sum-of-first 99) 
gives 4950, how would you use this to compute the correct answer for (sum-of-first 100)?

16. Write a recursive procedure (stack-copies n image) that stacks up n copies of a given image.
Hint: to create a stack of height n, just create a stack of height n-1 and then stack one more copy of 
the image on top of that.

17. Write a recursive procedure (fibo n) that computes the nth Fibonacci number.  By definition, the 
1st and 2nd Fibonacci numbers are 1.  After that, the nth Fibonacci number can be computed by simply 
adding the (n-1)th and (n-2)th Fibonacci numbers together.  Check your results by comparing your 
procedure's output to the Fibonacci values given on page 135 of GEB.

18. Write recursive Scheme procedures called G, H, F, M, and Q, which compute the functions described in
GEB on pages 137-138.  What is the 25 th Q number?
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