Binary Trees

Binary Trees

Binary Trees

Terminology

Terminology

Terminology

leaf nodes

Terminology

Terminology

Terminology

Terminology

descendant nodes

Terminology

Terminology

levels

Terminology

height $=3$

Note: this usage differs from the book's usage

Terminology

height $=4$

Terminology

Full Binary Tree

All nodes have either 2 or 0 children

Complete Binary Tree

All levels of the tree are completely filled starting from the left, except possibly the lowest level

Balanced Binary Tree

Unbalanced Binary Tree

Binary Search Trees

This is a valid binary search tree

Violates BST property: 8 is not <7

Violates BST property: 17 is not >19

Violates BST property: 12 is not < 9

Violates BST property: 18 is not >21

Duplicate elements are not allowed

Binary search trees are good at representing sets $\{3,5,8,9,13,14,15,17,22,25\}$

Testing for Membership

is 65 a member?

Testing for Membership

is 12 a member?

If the Tree is Balanced ...

n elements

If the Tree is Balanced ...

n elements

If the Tree is Balanced ...

n elements

Testing for Membership

$\mathrm{O}(\log n)$ time complexity

Inserting a New Element

Inserting a New Element

O(log n) time complexity

