
Analyzing the Efficiency of Algorithms

We can calculate an approximation to the value e by summing up a series of terms. The more
terms we add together, the better our approximation will be:

e =
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+ . . .

// e1.java

public static void e1(int n) { // n is the number of terms to add up

double sum = 0.0;

for (int i = 0; i < n; i++) {

sum = sum + 1.0 / factorial(i);

}

System.out.printf("e is approximately %s\n", sum);

}

public static int factorial(int k) {

int product = 1;

for (int i = 1; i <= k; i++) {

product = product * i;

}

return product;

}

What is the total number of multiplication operations performed by the function e1 when it is
called with an input value of n? There are no multiplication operations within the body of e1

itself. However, notice that e1 calls the helper function factorial repeatedly, in a for-loop.

Each time the factorial function is called with an input value of k, it performs exactly k multipli-
cations. Since e1 calls factorial(0), factorial(1), factorial(2), etc., up to factorial(n-1),
it performs a total of 0 +1 +2 + 3+ . . .+n−1 multiplications when adding up n terms of the series.

We can express 0 + 1 + 2 + 3 + . . . + n−1 equivalently as the formula 1
2n

2 − 1
2n

Number of white squares = 1 + 2 + . . . + n−1 + n
Number of gray squares = 1 + 2 + . . . + n−1

Total number of squares = 2×
(
1 + 2 + . . . + n−1

)
+ n

= n2

Solving for
(
1 + 2 + . . . + n−1

)
= (n2 − n)/2

= 1
2n

2 − 1
2n

So e1 performs 1
2n

2 − 1
2n multiplications in all, when called with an input value of n.

1

Here is a table of the number of multiplications performed for various values of n:

n 1
2n

2 − 1
2n

1 0
2 1
3 3
4 6
5 10
10 45
20 190
30 435
40 780
50 1225
60 1770

We could use other measures of running time, such as the number of additions, the number of
comparisons, or the total number of arithmetic operations:

factorial(k):

Number of multiplications = k

Number of additions = k

Number of comparisons = k + 1

e1(n):

Number of multiplications = 1
2n

2 − 1
2n

Number of additions =
(
0 + 1 + 2 + 3 + . . . + n−1

)
+ 2n = 1

2n
2 + 3

2n

Number of divisions = n

Number of comparisons = (n+1) +
[
(0+1) + (1+1) + (2+1) + . . . + (n−1)+1

]
= (n+1) +

[
1 + 2 + 3 + . . . + n

]
= (n+1) +

[
1 + 2 + 3 + . . . + n−1

]
+ n

= (n+1) +
[
1
2n

2 − 1
2n
]

+ n

= 1
2n

2 + 3
2n + 1

Total operations performed = #multiplications + #additions + #divisions + #comparisons

=
(
1
2n

2 − 1
2n
)

+
(
1
2n

2 + 3
2n
)

+ n +
(
1
2n

2 + 3
2n + 1

)
= 3

2n
2 + 7

2n + 1

Notice that whichever measure we use, we still end up with an n2 term. We say that the running
time of e1 is T (n) = 3

2n
2 + 7

2n + 1, and its time complexity is “order n squared”, or O(n2).

2

Now consider an alternative way of computing e:

// e2.java

public static void e2(int n) { // n is the number of terms to add up

double sum = 0.0;

double denom = 1.0;

for (int i = 1; i <= n; i++) {

sum = sum + 1.0 / denom;

denom = denom * i;

}

System.out.printf("e is approximately %s\n", sum);

}

Number of multiplications = n

Number of additions = 2n

Number of divisions = n

Number of comparisons = n + 1

Total operations performed = #multiplications + #additions + #divisions + #comparisons

= n + 2n + n + (n + 1)

= 5n + 1

We say that the running time of e2 is T (n) = 5n+1, and its time complexity is “order n”, or O(n).

This table compares the running times of e2 and e1 for various values of n:

n 5n + 1 3
2n

2 + 7
2n + 1

0 1 1
10 51 186
20 101 671
30 151 1456
40 201 2541
50 251 3926
60 301 5611
70 351 7596
80 401 9881
90 451 12466
100 501 15351

Some examples

Big-O notation Description Examples

O(1) “constant time” 1 6 342 5 trillion
O(n) “linear time” n 1000n 5n + 1 40n + 5 trillion
O(n2) “quadratic time” n2 1

100n
2 7n2 + 3n + 24

O(n3) “cubic time” 100n3 + 700n2 + 1000
O(log n) “logarithmic time” binary search, fast exponentiation
O(2n) “exponential time” recursive fibonacci, lookahead in games

3

Standard Exponentiation Algorithm

bn =

{
1 if n = 0

b× bn−1 if n > 0

public static double power(double b, long n) {

if (n == 0) {

return 1;

} else {

return b * power(b, n - 1);

}

}

Fast Exponentiation Algorithm

bn =


1 if n = 0

(b
n
2)2 if n > 0 and n is even

b× bn−1 if n > 0 and n is odd

public static double fastpower(double b, long n) {

if (n == 0) {

return 1;

} else if (isEven(n)) {

return square(fastpower(b, n / 2));

} else {

return b * fastpower(b, n - 1);

}

}

Best case example: b32

n result

32 (b16)2

16 ((b8)2)2

8 (((b4)2)2)2

4 ((((b2)2)2)2)2

2 (((((b1)2)2)2)2)2

1 (((((b× b0)2)2)2)2)2

0 (((((b× 1)2)2)2)2)2

6 multiplications

about log2(n) multiplications in the best case

exact # of multiplications: log2(n) + 1

Worst case example: b31

n result

31 b× b30

30 b× (b15)2

15 b× (b× b14)2

14 b× (b× (b7)2)2

7 b× (b× (b× b6)2)2

6 b× (b× (b× (b3)2)2)2

3 b× (b× (b× (b× b2)2)2)2

2 b× (b× (b× (b× (b1)2)2)2)2

1 b× (b× (b× (b× (b× b0)2)2)2)2

0 b× (b× (b× (b× (b× 1)2)2)2)2

9 multiplications

about 2 log2(n) multiplications in the worst case

exact # of multiplications: 2blog2(n)c+ 1

O(log n) time complexity

4

Prime Test 1

How to determine if n is prime? Simple approach: check all numbers 2, 3, 4, . . . , n − 1 to see if
any of them is a factor of n (that is, a number that divides into n evenly, with no remainder).

public static boolean primeTest1(long n) {

if (n < 2) return false;

for (long i = 2; i < n; i++) {

if (n % i == 0) return false;

}

return true;

}

Worst case, when n is prime: n− 2 loop cycles

O(n) time complexity

Prime Test 2

No factors greater than
n

2
can exist, so we only need to check up to

n

2
.

Example: 24 = 2× 12
= 3× 8
= 4× 6
= 6× 4
= 8× 3
= 12× 2

public static boolean primeTest2(long n) {

if (n < 2) return false;

for (long i = 2; i <= n / 2; i++) {

if (n % i == 0) return false;

}

return true;

}

Worst case, when n is prime:
n

2
− 1 loop cycles

O(n) time complexity

5

Prime Test 3

We really only need to check up to
√
n because of symmetry.

Example: 36 = 2× 18
= 3× 12
= 4× 9
= 6× 6
= 9× 4 redundant
= 12× 3 redundant
= 18× 2 redundant

Example: 49 = 7× 7

public static boolean primeTest3(long n) {

if (n < 2) return false;

long squareRoot = (long) Math.sqrt(n); // (long) truncates fractional part

for (long i = 2; i <= squareRoot; i++) {

if (n % i == 0) return false;

}

return true;

}

Worst case, when n is prime:
√
n− 1 loop cycles

O(
√
n) time complexity

Prime Test 4

We also don’t need to check even numbers greater than 2.

public static boolean primeTest4(long n) {

if (n < 2) return false;

if (n == 2) return true;

if (n % 2 == 0) return false;

long squareRoot = (long) Math.sqrt(n); // (long) truncates fractional part

for (long i = 3; i <= squareRoot; i += 2) {

if (n % i == 0) return false;

}

return true;

}

for (long i = 1; i <= squareRoot; i++)
√
n cycles

for (long i = 1; i <= squareRoot; i += 2) 1
2

√
n cycles

for (long i = 3; i <= squareRoot; i += 2) 1
2

√
n− 1 cycles

Worst case, when n is prime: 1
2

√
n− 1 loop cycles

O(
√
n) time complexity

6

Prime Test 5

We really only need to check primes up to
√
n.

public static boolean primeTest5(long n) {

if (n < 2) return false;

if (n == 2) return true;

if (n % 2 == 0) return false;

long squareRoot = (long) Math.sqrt(n); // (long) truncates fractional part

for (Long i : primeList) {

if (i > squareRoot) return true; // only check up to sqrt(n)

if (n % i == 0) return false;

}

return true;

}

Prime Number Theorem: the number of primes ≤ x is roughly
x

log x(
Note:

x

log(x)− 1
is actually a better approximation.

)

Worst case, when n is prime: there are about

√
n

log
√
n

primes to check

=

√
n

log(n
1
2)

=

√
n

1
2 log n

=
2
√
n

log n
loop cycles

O
(√n

log n

)
time complexity

7

Fast Exponentiation Algorithm, Modulo M

21000 = 10715086071862673209484250490600018105614.....(250 digits omitted).....05668069376

21000 mod 10 = 6

2× 2 mod 10 = 4
4× 2 mod 10 = 8
8× 2 mod 10 = 6
6× 2 mod 10 = 2
2× 2 mod 10 = 4
. . .
8× 2 mod 10 = 6

public static long fastpowerModulo(long b, long n, long M) {

if (n == 0) {

return 1;

} else if (isEven(n)) {

return square(fastpowerModulo(b, n / 2, M)) % M;

} else {

return (b * fastpowerModulo(b, n - 1, M)) % M;

}

}

Takes about 2 log2 n steps in the worst case.

Prime Test 6: the Fermat Test

Pierre de Fermat’s “Little Theorem” (17th century): If N is a prime number, then the relation

aN mod N = a

holds for all numbers from 1 to N−1, inclusive. On the other hand, if N is not prime, then usually
most numbers from 1 to N − 1 will not satisfy this relation.

Idea: pick a number from 1 to N − 1 at random and see if the relation holds. If it fails, we know N
isn’t prime. If it passes, N is probably prime, but try a few more spot checks to be more certain.

public static boolean primeTest6(long n) {

int TRIALS = 10;

if (n < 2) return false;

for (int i = 1; i <= TRIALS; i++) {

long a = pickRandom(1, n-1);

if (fastpowerModulo(a, n, n) != a) return false;

}

return true;

}

Worst case running time: 10× (2 log n) = 20 log n

O(log n) time complexity, which is much less than O(
√
n)

8

Carmichael numbers fool the Fermat test: all of the numbers from 1 to N − 1 pass the aN mod N
test, but N is still not prime!

Carmichael numbers are very rare: only 255 of them below 100,000,000

The first few are: 561, 1105, 1729, 2465, 2821, 6601, 8911

In testing primality of very large numbers chosen at random, the chance of stumbling
upon a value that fools the Fermat test is less than the chance that cosmic radiation will
cause the computer to make an error in carrying out a “correct” algorithm. Considering
an algorithm to be inadequate for the first reason but not for the second illustrates the
difference between mathematics and engineering.

—Hal Abelson and Gerry Sussman

More sophisticated versions of the Fermat test exist that cannot be fooled (e.g., Miller-Rabin test).

Summary of worst-case running times

Prime test Running time (loop cycles) Time complexity

1 n− 2 O(n)

2 n/2− 1 O(n)

3
√
n− 1 O(

√
n)

4
√
n/2− 1 O(

√
n)

5 2
√
n/ log(n) O(

√
n/ log n)

6 20 log(n) O(log n)

9

