Analyzing the Efficiency of Algorithms

We can calculate an approximation to the value e by summing up a series of terms. The more terms we add together, the better our approximation will be:
$e=\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots$

```
// e1.java
public static void e1(int n) { // n is the number of terms to add up
    double sum = 0.0;
    for (int i = 0; i < n; i++) {
        sum = sum + 1.0 / factorial(i);
    }
    System.out.printf("e is approximately %s\n", sum);
}
public static int factorial(int k) {
    int product = 1;
    for (int i = 1; i <= k; i++) {
        product = product * i;
    }
    return product;
}
```

What is the total number of multiplication operations performed by the function e1 when it is called with an input value of n ? There are no multiplication operations within the body of e1 itself. However, notice that e1 calls the helper function factorial repeatedly, in a for-loop.

Each time the factorial function is called with an input value of k, it performs exactly k multiplications. Since e1 calls factorial(0), factorial(1), factorial(2), etc., up to factorial(n-1), it performs a total of $0+1+2+3+\ldots+n-1$ multiplications when adding up n terms of the series.

So e1 performs $\frac{1}{2} n^{2}-\frac{1}{2} n$ multiplications in all, when called with an input value of n.

Here is a table of the number of multiplications performed for various values of n :

n	$\frac{1}{2} n^{2}-\frac{1}{2} n$
1	0
2	1
3	3
4	6
5	10
10	45
20	190
30	435
40	780
50	1225
60	1770

We could use other measures of running time, such as the number of additions, the number of comparisons, or the total number of arithmetic operations:

```
factorial(k):
```

Number of multiplications $=k$
Number of additions $\quad=k$
Number of comparisons $\quad=k+1$
e1(n):

Number of multiplications	$=\frac{1}{2} n^{2}-\frac{1}{2} n$
Number of additions	$=(0+1+2+3+\ldots+n-1)+2 n=\frac{1}{2} n^{2}+\frac{3}{2} n$
Number of divisions	$=n$
Number of comparisons	$=(n+1)+[(0+1)+(1+1)+(2+1)+\ldots+(n-1)+1]$
	$=(n+1)+[1+2+3+\ldots+n]$
	$=(n+1)+[1+2+3+\ldots+n-1]+n$
	$=(n+1)+\left[\frac{1}{2} n^{2}-\frac{1}{2} n\right]+n$
	$=\frac{1}{2} n^{2}+\frac{3}{2} n+1$

Total operations performed $=$ \#multiplications + \#additions + \#divisions + \#comparisons

$$
\begin{aligned}
& =\left(\frac{1}{2} n^{2}-\frac{1}{2} n\right)+\left(\frac{1}{2} n^{2}+\frac{3}{2} n\right)+n+\left(\frac{1}{2} n^{2}+\frac{3}{2} n+1\right) \\
& =\frac{3}{2} n^{2}+\frac{7}{2} n+1
\end{aligned}
$$

Notice that whichever measure we use, we still end up with an n^{2} term. We say that the running time of e1 is $T(n)=\frac{3}{2} n^{2}+\frac{7}{2} n+1$, and its time complexity is "order n squared", or $O\left(n^{2}\right)$.

Now consider an alternative way of computing e :

```
// e2.java
public static void e2(int n) { // n is the number of terms to add up
    double sum = 0.0;
    double denom = 1.0;
    for (int i = 1; i <= n; i++) {
        sum = sum + 1.0 / denom;
        denom = denom * i;
    }
    System.out.printf("e is approximately %s\n", sum);
}
```

Number of multiplications $=n$
Number of additions $=2 n$
Number of divisions $\quad=n$
Number of comparisons $\quad=n+1$
Total operations performed $=$ \#multiplications + \#additions + \#divisions + \#comparisons

$$
\begin{aligned}
& =n+2 n+n+(n+1) \\
& =5 n+1
\end{aligned}
$$

We say that the running time of e 2 is $T(n)=5 n+1$, and its time complexity is "order n ", or $O(n)$.
This table compares the running times of e2 and e1 for various values of n :

n	$5 n+1$	$\frac{3}{2} n^{2}+\frac{7}{2} n+1$
0	1	1
10	51	186
20	101	671
30	151	1456
40	201	2541
50	251	3926
60	301	5611
70	351	7596
80	401	9881
90	451	12466
100	501	15351

Some examples

Big-O notation	Description	Examples
$O(1)$	"constant time"	63425 trillion
$O(n)$	"linear time"	$n \quad 1000 n \quad 5 n+1 \quad 40 n+5$ trillion
$O\left(n^{2}\right)$	"quadratic time"	$n^{2} \quad \frac{1}{100} n^{2} \quad 7 n^{2}+3 n+24$
$O\left(n^{3}\right)$	"cubic time"	$100 n^{3}+700 n^{2}+1000$
$O(\log n)$	"logarithmic time"	binary search, fast exponentiation
$O\left(2^{n}\right)$	"exponential time"	recursive fibonacci, lookahead in games

$b^{n}= \begin{cases}1 & \text { if } n=0 \\ b \times b^{n-1} & \text { if } n>0\end{cases}$

```
public static double power(double b, long n) {
    if (n == 0) {
        return 1;
    } else {
        return b * power(b, n - 1);
    }
}
```


Fast Exponentiation Algorithm

$b^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(b^{\frac{n}{2}}\right)^{2} & \text { if } n>0 \text { and } n \text { is even } \\ b \times b^{n-1} & \text { if } n>0 \text { and } n \text { is odd }\end{cases}$

```
public static double fastpower(double b, long n) {
    if (n == 0) {
        return 1;
    } else if (isEven(n)) {
        return square(fastpower(b, n / 2));
    } else {
        return b * fastpower(b, n - 1);
    }
}
```

Best case example: b^{32}

n	result
32	$\left(b^{16}\right)^{2}$
16	$\left(\left(b^{8}\right)^{2}\right)^{2}$
8	$\left(\left(\left(b^{4}\right)^{2}\right)^{2}\right)^{2}$
4	$\left(\left(\left(\left(b^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}$
2	$\left(\left(\left(\left(\left(b^{1}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}$
1	$\left.\left(\left(\left(\left(b \times b^{0}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}$
0	$\left.\left(\left(\left((b \times 1)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}$

6 multiplications
about $\log _{2}(n)$ multiplications in the best case
exact \# of multiplications: $\log _{2}(n)+1$

Worst case example: b^{31}

n	result
31	$b \times b^{30}$
30	$b \times\left(b^{15}\right)^{2}$
15	$b \times\left(b \times b^{14}\right)^{2}$
14	$b \times\left(b \times\left(b^{7}\right)^{2}\right)^{2}$
7	$b \times\left(b \times\left(b \times b^{6}\right)^{2}\right)^{2}$
6	$b \times\left(b \times\left(b \times\left(b^{3}\right)^{2}\right)^{2}\right)^{2}$
3	$b \times\left(b \times\left(b \times\left(b \times b^{2}\right)^{2}\right)^{2}\right)^{2}$
2	$b \times\left(b \times\left(b \times\left(b \times\left(b^{1}\right)^{2}\right)^{2}\right)^{2}\right)^{2}$
1	$b \times\left(b \times\left(b \times\left(b \times\left(b \times b^{0}\right)^{2}\right)^{2}\right)^{2}\right)^{2}$
0	$b \times\left(b \times\left(b \times\left(b \times(b \times 1)^{2}\right)^{2}\right)^{2}\right)^{2}$

9 multiplications
about $2 \log _{2}(n)$ multiplications in the worst case exact \# of multiplications: $2\left\lfloor\log _{2}(n)\right\rfloor+1$
$O(\log n)$ time complexity

Prime Test 1

How to determine if n is prime? Simple approach: check all numbers $2,3,4, \ldots, n-1$ to see if any of them is a factor of n (that is, a number that divides into n evenly, with no remainder).

```
public static boolean primeTest1(long n) {
    if (n < 2) return false;
    for (long i = 2; i < n; i++) {
        if (n % i == 0) return false;
    }
    return true;
}
```

Worst case, when n is prime: $n-2$ loop cycles
$O(n)$ time complexity

Prime Test 2

No factors greater than $\frac{n}{2}$ can exist, so we only need to check up to $\frac{n}{2}$.

$$
\text { Example: } \begin{aligned}
24 & =2 \times 12 \\
& =3 \times 8 \\
& =4 \times 6 \\
& =6 \times 4 \\
& =8 \times 3 \\
& =12 \times 2
\end{aligned}
$$

```
public static boolean primeTest2(long n) {
    if (n < 2) return false;
    for (long i = 2; i <= n / 2; i++) {
        if (n % i == 0) return false;
    }
    return true;
}
```

Worst case, when n is prime: $\frac{n}{2}-1$ loop cycles
$O(n)$ time complexity

Prime Test 3

We really only need to check up to \sqrt{n} because of symmetry.

```
Example: 36 = 2\times18
    = 3\times12
    =4\times9
    =6\times6
    =9\times4 redundant
    = 12\times3 redundant
    = 18\times2 redundant
Example: 49 = 7\times7
```

```
public static boolean primeTest3(long n) {
```

public static boolean primeTest3(long n) {
if (n < 2) return false;
if (n < 2) return false;
long squareRoot = (long) Math.sqrt(n); // (long) truncates fractional part
long squareRoot = (long) Math.sqrt(n); // (long) truncates fractional part
for (long i = 2; i <= squareRoot; i++) {
for (long i = 2; i <= squareRoot; i++) {
if (n % i == 0) return false;
if (n % i == 0) return false;
}
}
return true;
return true;
}

```
}
```

Worst case, when n is prime: $\sqrt{n}-1$ loop cycles
$O(\sqrt{n})$ time complexity

Prime Test 4

We also don't need to check even numbers greater than 2 .

```
public static boolean primeTest4(long n) {
    if (n < 2) return false;
    if (n == 2) return true;
    if (n % 2 == 0) return false;
    long squareRoot = (long) Math.sqrt(n); // (long) truncates fractional part
    for (long i = 3; i <= squareRoot; i += 2) {
        if (n % i == 0) return false;
    }
    return true;
}
```

```
for (long i = 1; i <= squareRoot; i++) \sqrt{}{n}}\mathrm{ cycles
for (long i = 1; i <= squareRoot; i += 2)
for (long i = 3; i <= squareRoot; i += 2)
\frac{1}{2}}\sqrt{}{n}\mathrm{ cycles
\frac{1}{2}}\sqrt{}{n}-1\mathrm{ cycles
```

Worst case, when n is prime: $\frac{1}{2} \sqrt{n}-1$ loop cycles
$O(\sqrt{n})$ time complexity

Prime Test 5

We really only need to check primes up to \sqrt{n}.

```
public static boolean primeTest5(long n) {
    if (n < 2) return false;
    if (n == 2) return true;
    if (n % 2 == 0) return false;
    long squareRoot = (long) Math.sqrt(n); // (long) truncates fractional part
    for (Long i : primeList) {
        if (i > squareRoot) return true; // only check up to sqrt(n)
        if (n % i == 0) return false;
    }
    return true;
}
```

Prime Number Theorem: the number of primes $\leq x$ is roughly $\frac{x}{\log x}$ (Note: $\frac{x}{\log (x)-1}$ is actually a better approximation.)

Worst case, when n is prime: there are about $\frac{\sqrt{n}}{\log \sqrt{n}}$ primes to check
$=\frac{\sqrt{n}}{\log \left(n^{\frac{1}{2}}\right)}=\frac{\sqrt{n}}{\frac{1}{2} \log n}=\frac{2 \sqrt{n}}{\log n}$ loop cycles
$O\left(\frac{\sqrt{n}}{\log n}\right)$ time complexity

```
Fast Exponentiation Algorithm, Modulo M
2 1000}=10715086071862673209484250490600018105614....(250 digits omitted).....05668069376
2 1000 mod 10=6
    2\times2 mod 10=4
    4\times2 mod 10=8
    8\times2 mod 10=6
    6\times2 mod 10=2
    2\times2 mod 10=4
    ..
    8\times2 mod 10=6
```

```
public static long fastpowerModulo(long b, long n, long M) {
    if (n == 0) {
        return 1;
    } else if (isEven(n)) {
        return square(fastpowerModulo(b, n / 2, M)) % M;
    } else {
        return (b * fastpowerModulo(b, n - 1, M)) % M;
    }
}
```

Takes about $2 \log _{2} n$ steps in the worst case.

Prime Test 6: the Fermat Test

Pierre de Fermat's "Little Theorem" (17th century): If N is a prime number, then the relation

$$
a^{N} \bmod N=a
$$

holds for all numbers from 1 to $N-1$, inclusive. On the other hand, if N is not prime, then usually most numbers from 1 to $N-1$ will not satisfy this relation.

Idea: pick a number from 1 to $N-1$ at random and see if the relation holds. If it fails, we know N isn't prime. If it passes, N is probably prime, but try a few more spot checks to be more certain.

```
public static boolean primeTest6(long n) {
    int TRIALS = 10;
    if (n < 2) return false;
    for (int i = 1; i <= TRIALS; i++) {
        long a = pickRandom(1, n-1);
        if (fastpowerModulo(a, n, n) != a) return false;
    }
    return true;
}
```

Worst case running time: $10 \times(2 \log n)=20 \log n$
$O(\log n)$ time complexity, which is much less than $O(\sqrt{n})$

Carmichael numbers fool the Fermat test: all of the numbers from 1 to $N-1$ pass the $a^{N} \bmod N$ test, but N is still not prime!

Carmichael numbers are very rare: only 255 of them below 100,000,000
The first few are: $561,1105,1729,2465,2821,6601,8911$

In testing primality of very large numbers chosen at random, the chance of stumbling upon a value that fools the Fermat test is less than the chance that cosmic radiation will cause the computer to make an error in carrying out a "correct" algorithm. Considering an algorithm to be inadequate for the first reason but not for the second illustrates the difference between mathematics and engineering.
-Hal Abelson and Gerry Sussman

More sophisticated versions of the Fermat test exist that cannot be fooled (e.g., Miller-Rabin test).

Summary of worst-case running times

Prime test	Running time (loop cycles)	Time complexity
1	$n-2$	$O(n)$
2	$n / 2-1$	$O(n)$
3	$\sqrt{n}-1$	$O(\sqrt{n})$
4	$\sqrt{n} / 2-1$	$O(\sqrt{n})$
5	$2 \sqrt{n} / \log (n)$	$O(\sqrt{n} / \log n)$
6	$20 \log (n)$	$O(\log n)$

