
Lab 12 — Heuristic Search Data Structures and Algorithms – Spring 2024

In class, we developed a heuristic version of the Mazerunner program, in which the search process is
guided by an estimate of the remaining distance to the goal. In this lab, your job is to extend the
8-puzzle solver to use heuristic search in a similar way. To get started, download lab12_files.zip from
the class web page, which contains the starting code for the 8-puzzle solver. Together, we will first
implement a version that uses breadth-first search.

1. As an initial benchmark test, run the breadth-first search (BFS) version of the 8-puzzle solver on
each of the predefined starting boards Board.a through Board.h provided in the Board class. In
each case, you should use Board.goal1 as your goal. The more challenging boards x, y, and z are
much harder for breadth-first search to solve, so just ignore those for now. For each board, fill in
the “BFS” column of the table on the next page with the length of the solution path found, followed
by the number of boards examined, separated by a slash. For example, for a solution path of 10
moves, found after examining 769 boards, you would write “10 / 769”.

2. To implement heuristic search, the first thing you'll need to do is make Board objects be
comparable to each other, so that they can be stored in and retrieved from a priority queue. Add the
instance variables estimatedMovesLeft and priority to the Board class, and implement a
compareTo method that compares Board objects based on their priority values.

3. We also need a way to set a Board's priority value. Add a new method setPriority that takes a
goal board as input and sets the priority based on an estimate of how far away the goal appears to
be. As a first approximation, define a heuristic function called heuristic1 that simply counts the
number of out-of-place tiles on the board relative to the goal, and returns that as the estimate (hint:
the find method will be helpful here). Make sure not to count the blank! Also define a more
accurate heuristic function called heuristic2 that computes the Manhattan distance (also called
the “city block distance”) between the board and a goal. Code for testing your heuristic functions
on the following example is available in the EightPuzzle main method:

 board goal
5 2 1 1 2 3 heuristic1 = 1 + 0 + 1 + 1 + 1 + 0 + 0 + 1 = 5
3 4 8 8 4 heuristic2 = 2 + 0 + 3 + 1 + 4 + 0 + 0 + 2 = 12
7 6 7 6 5

4. The next step is to modify the search algorithm to use a priority queue instead of an ordinary queue.
Make a copy of the breadthFirstSearch method in EightPuzzle.java and change its name to
heuristicSearch, and then modify it to use a PriorityQueue<Board>. Whenever a new board is
created, you'll need to set the board's priority value before adding it to the queue.

5. Now you're ready to try out heuristicSearch on all of the starting boards. You should use goal1
with boards a through h, and goal2 with the more challenging boards x, y, and z. To begin with, try a
greedy search based on heuristic1. In a greedy search, we only pay attention to the heuristic estimate
of the remaining distance to the goal, and ignore the number of moves already made from the start state
to the current state. Thus your setPriority method should look like this for greedy search:

public void setPriority(Board goal) {
 this.estimatedMovesLeft = heuristic1(goal);
 this.priority = this.estimatedMovesLeft;
}

Fill in the “greedy (h1)” column of the table with your results for each of the starting states. How do
the solutions found compare to those found by BFS? Is greedy search able to find solutions to the
harder boards x, y, and z? How do the total number of boards searched compare?

6. Now change the heuristic function used by greedy search to heuristic2 and repeat the tests, filling in
the “greedy (h2)” column of the table below. How does heuristic2 (Manhattan distance) compare to
heuristic1 (displaced tiles) in terms of the total number of states examined?

7. Now try A* search, in which the priority of a state is the sum of the distance already traveled from
the start (movesMade) plus the estimated distance remaining to the goal (estimatedMovesLeft).
This strategy, which relies on both pieces of information to guide the search—the first of which
contains no uncertainty—can be shown to be optimal in the sense that it is guaranteed to find the
shortest path to a solution while examining the fewest possible states, as long as the heuristic
function never overestimates the remaining distance. Modify your setPriority method
accordingly, and fill in the “A* (h1)” and “A* (h2)” columns of the table for heuristic1 and
heuristic2. Does heuristic2 give better performance than heuristic1 with A* search? How does A*
compare to greedy search, in terms of the solutions found and the total number of boards examined?

Start / Goal BFS greedy (h1) greedy (h2) A* (h1) A* (h2)
 moves / boards moves / boards moves / boards moves / boards moves / boards

__

 a / goal1
__

 b / goal1
__

 c / goal1
__

 d / goal1
__

 e / goal1
__

 f / goal1
__

 g / goal1
__

 h / goal1
__

 x / goal2
__

 y / goal2
__

 z / goal2
__

