

Lab 9 — Sorting Algorithms Data Structures and Algorithms – Spring 2024

1. Download lab09_files.zip from the class web page and unzip it on your Desktop, then open Sort.java in

DrJava. Go to Settings ® Interactions Pane and set Interactions Working Directory to your lab09_files
folder. Click OK, then click the Reset button at the top of the DrJava window.

2. The file Sort.java contains definitions for several different sorting algorithms. Compile the file, then type
the following command at the DrJava prompt:

> java Sort bubble

This creates an array of 30 random integers and runs the bubbleSort method on it. To specify a different
array size, simply include the desired size as an extra parameter. For example: java Sort bubble 100

To test different sorting algorithms, you can use the following keywords:
bubble, selection, insertion, shell, merge, quick, count1, count2

3. Test selectionSort, insertionSort, and shellSort on random arrays of various sizes using the Sort program.

4. Now let’s examine the behavior of bubbleSort as the array sizes get larger. To do this, we can run the
program SortTimer, specifying on the command line the sizes of the arrays to test. The command below
will run bubbleSort on random arrays of integers of sizes from 10000 to 30000 elements, in increments of
1000, and will display the number of milliseconds taken in each case:

> java SortTimer bubble 10000 30000 data.txt

It will also record this timing data in a text file called “data.txt”, which can be plotted using the Gnuplot
program, with the commands shown below (note: the gnuplot> prompt is not part of the command):

gnuplot> set style data lines
gnuplot> plot "data.txt"

Based on the shape of the curve, do you think the time complexity of bubbleSort is linear, quadratic, cubic,
or something else? Extending the array size up to 50000 elements may give a clearer picture of the shape.

5. Next, generate some timing data for the other sorting algorithms and view it in Gnuplot. You can specify a
different array increment size (the default is 1000) by including it as an extra command-line parameter after
the starting and ending sizes. For example, to compare all four algorithms on array sizes from 10000 to
40000 in increments of 2500, you could do this:

> java SortTimer bubble 10000 40000 2500 bubble.txt
> java SortTimer selection 10000 40000 2500 selection.txt
> java SortTimer insertion 10000 40000 2500 insertion.txt
> java SortTimer shell 10000 40000 2500 shell.txt

and then plot all of the results on the same graph with the Gnuplot command:

gnuplot> plot [][-100:] "bubble.txt","selection.txt","insertion.txt","shell.txt"

where [][-100:] tells Gnuplot to label the y-axis starting from –100 instead of 0.

6. Next, test mergeSort on some random arrays of various sizes to make sure it works correctly. Then run
some timing tests to compare its rate of growth to the other sorting algorithms.

7. Finish the implementation of quickSort by completing the definitions of the choosePivot and partition
methods. The choosePivot method can just return the element at position first in the array (but you could
also experiment with other choices, for comparison). An outline of the partition algorithm is given below:

partition(data, first, last, pivot):
 initialize left index i to array position first
 initialize right index j to array position last
 loop:
 move left index i rightward until we encounter an element > pivot
 move right index j leftward until we encounter an element < pivot
 if indices have met or crossed, quit the loop
 otherwise swap elements at positions i and j
 move i to right and j to left one position, and continue loop
 return j as the midpoint position of the partition

This method rearranges the elements in a subregion of the data array from positions first to last, around
a pivot value, such that only elements less than or equal to pivot end up on the left side of the subregion,
and only elements greater than or equal to pivot end up on the right side of the subregion. When the loop
finishes, all elements at positions first to j will be < pivot, and all elements at positions j+1 to last will be
> pivot. (The elements, however, will not necessarily be in sorted order.) Test your quickSort
implementation by running the commands:

> java Sort quick
> java Sort quick 200

8. If we know nothing at all about the elements we are sorting other than how to compare them, the fastest
general sorting algorithms run in O(n log n) time. But if we know more about our elements, we may be able
to take advantage of that information to improve the time complexity. For example, if we know that the
elements to be sorted are guaranteed to be integers in the range 0 to 100, we can sort them in O(n) time by
making use of an auxiliary array of 101 counters (one counter for each possible integer from 0 to 100).

Based on this idea, implement an O(n) sorting algorithm for arrays of integers with a minimum value of
0 and a maximum value of 100, by completing the definition of the countSort1 method in Sort.java. To
test countSort1, uncomment the line in the method generateTestCase at the top of Sort.java that returns
random arrays of values from 0 to 100. Then test countSort1 using the commands:

> java Sort count1
> java Sort count1 200

9. Next, plot timing data for countSort1 for array sizes from 1 million to 25 million elements in steps of
500,000. You may run other tests if you like. Do these results indicate a time complexity of O(n)?
What is the big-O space complexity of countSort1? That is, how fast does the amount of storage
required by countSort1 increase as a function of the number of elements to sort? Note: depending on
how much memory your computer has, you may need to increase the heap size setting in DrJava for
the larger tests (located under Settings ® Miscellaneous ® JVMs).

10. Rather than always assuming elements in the range 0 to 100, generalize your algorithm so that it
determines the maximum element in the array and uses this information to sort the array, by
completing the countSort2 method in Sort.java. You should still assume that the smallest possible
element is 0. To test countSort2, change generateTestCase to return arrays of integers from 0 to the
size of the array, and run the commands:

> java Sort count2
> java Sort count2 200

Is the time complexity of countSort2 still O(n)? What is its big-O space complexity? Generate some
timing data for countSort2 and plot the running times of countSort1 and countSort2 on the same
graph. How do the curves compare?

