CS 50 Lab 11 – File Processing in Java

In this lab you will practice using files and two-dimensional arrays. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call me over for help, answers to questions, or comments.

1. Rot13. In the CS 50 class folder under Labs/Lab11 you will find a program Rot13.java. This program encrypts a file using the "rot13" method, which simply shifts all letters forward 13 positions in the alphabet (modulo 26). However, this program contains a subtle bug. Figure out what's wrong and fix the problem. First, try encrypting a few files twice, including some Java source code files. You should get back exactly what you started with. What in fact happens? Hint: look at the code carefully and consult the Unicode chart on page 732 of your textbook.

2. ReadGrid. A skeletal version of ReadGrid.java is available in Labs/Lab11. This program creates a two-dimensional array of characters from a file, and then prints out the array, with each character separated by a single space. Without changing main or readGrid, complete the method definitions for convertToGrid, readLines, and printGrid, so that the program works as shown below:

DOS> java ReadGrid pets.txt

Contents of grid:

c a t d x f

k c o r e r

d g o k c o

y r a w i g

t n i e m t

s f w b r n

3. Letter Frequencies. Write a program called LetterFreqs that analyzes a text file and reports the letter frequencies in that file, ignoring spaces and punctuation. Your program should accept the file name as a command-line argument. You are not allowed to use the ConsoleReader class; instead, use FileReader, and, if you wish, BufferedReader. Print out a table of the letter frequencies as percentages of total letters. A sample interaction is shown below:
DOS> java LetterFreqs story.txt
Letter Frequency Table

A 8% N 8%

B 1% O 7%

C 3% P 3%

D 4% Q 1%

E 12% R 8%

 . . .

L 4% Y 2%

M 3% Z 1%

Idea: Maintain an array of 26 numbers representing the actual frequencies of each letter encountered, ignoring upper/lower case. Each time you read in a letter from the file, increment the value in the corresponding slot. Also keep track of the total number of letters processed.

