CS 30 Lab 15 — Subsumption Architecture

In this lab you’ll experiment with the subsumption architecture. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

1. Copy the file subsumption.ic from the CS 30 Labs/Lab15 subfolder to your userspace or desktop. This file implements a simple subsumption-style architecture with three behaviors: cruise, follow, and escape. The cruise behavior always goes forward, follow turns toward the light, and escape tries to avoid obstacles by backing away and turning whenever one of the robot's touch sensors is activated. All three behaviors run in parallel as separate processes.

Each process has a pair of global variables associated with it: a flag variable, which the process sets to 1 whenever it wants control of the motors, and a command variable which indicates what type of signal the process wants to send to the motors. For example, if the follow process wants to make the robot turn right, it sets the variable follow_command to the value TURNRIGHT and the variable follow_output_flag to 1. In order to better distribute the Handy Board's computational resources among the three processes, each process gives up control immediately after a single loop iteration using the defer() function.

The arbitrate() function monitors these flag variables, and decides which behavior should be allowed to gain control of the robot's motors. The cruise behavior has the lowest priority. The follow behavior overrides cruise, and the escape behavior overrides both follow and cruise. The motor_driver() function repeatedly calls arbitrate() in order to decide which signal to send to the motors, and then sets the motors accordingly.

2. After studying the subsumption.ic code, download it into your robot and try it out. How well does the robot perform, compared to the control program you developed last week? Feel free to modify the given behaviors and to add your own behaviors. For example, you could try using the bend sensors to implement wall-following.

3. You may also wish to add some simple state so that the robot can detect when it is stuck. This idea is sometimes called meta-sensing. To explore this idea, look at the program metasense.ic. This is a version of last week's simple touch sensor avoidance program, which monitors is own behavior. The program uses a bump counter to keep track of successive collisions, and a timer to determine whether the collisions are happening one after the next. When five collisions happen in rapid succession, the program calls the function take_action(), which causes the robot to back up and turn around. Other, more elaborate responses are of course possible.

Run this program on your Handy Bug and compare its performance to your own control program, and to that of the subsumption program. Can you add this type of meta-sensing capability to the subsumption program? Experiment with other response strategies for getting out of a rut.

