CS 30 Lab 13 — Introducing the Handy Board and Interactive C

In this lab you'll build a simple autonomous robot using Legos and the Handy Board robot controller, and start writing control programs for your robot in Interactive C.  You are encouraged to talk things over with your lab-mates.  Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

1. Team up in pairs.  Each team will be provided with instructions for building the Lego HandyBug and all the needed Lego parts.  For your first Lego robot you should stick to the design described in the instructions.  It’s a good introduction to sturdy Lego design and allows you to get started programming in Interactive C.
2. Once you have finished building your Bug get a Handy Board and find a computer in the classroom with a serial interface card connected to the back.  Plug the phone line into the port on your Handy Board and turn the Handy Board on.  The LED should show the words “IC 4.01 Handy Board 1.2” and a beating heart.  If you don’t see this, let us know.  
3. Log into your computer and launch Interactive C from the start menu.  Select the Handy Board controller and communications port com1.

4. As long as the Handy Board is connected to the serial port, Interactive C allows you to type commands into the interaction window that are executed immediately.  Try out the following commands.  Remember to hit Enter after each command.

printf("Hello World\n");     

printf("5 x 4 = %d", 5 * 4);

beep();

{ int i; for (i = 1; i < 6; i++) { tone(((float) i * 100.0), 1.0); sleep(1.0); }}

The printf function prints output to the Handy Board LED.  The characters \n inside a printf string generate a "newline".  The characters %d are used to print out an integer at that place in the string, in which case the value to be printed should appear as an extra argument to printf.  The tone function takes two floating-point arguments: the first specifies a pitch and the second the duration of the tone in seconds.  Sleep takes a single floating-point value and suspends control of the Handy Board for that many seconds.  

5. Using a for loop, write a command that causes the Handy Board’s LED to display the numbers 1 through 10, one at a time.

6. As you’ve probably noticed by now, the Handy Board isn’t very interesting without a body.  Mount the board onto your Handy Bug and connect the motor and touch sensor cables as follows.  If you orient the Handy Board with the LED along the top, the four motor connections are along the left edge below the serial port connection.  The 15 sensor connections are along the bottom edge.  Plug the left motor into MOTOR-0 and the right motor into MOTOR-3.  Plug the right touch sensor into sensor port 10 and the left touch sensor into sensor port 11.

                                                                            (continued on back)

7.  Make sure that your Handy Bug is on the ground with a couple of feet of clear space in front of it and try the following command

{ motor(0, 50); motor(3, 50); sleep(4.0); ao(); }

The first argument to the motor function is the number of a port on the Handy Board
 with a motor attached.  The second argument is an integer between -100 and 100, with negative values causing the motor to run in reverse.  ao(); shuts down all the motors at once.  To stop individual motors, you can use the command off(port-number);  Play around with the motor controls for a while – just remember that your robot is still connected to the serial cable.  What is the command for a 90 degree turn?

8. Now try this command:

{ while (1) { if (digital(11)) { beep(); }}}

Note that this is a command for an infinite loop, which will continue executing until you enter another command, click the Stop button in the IC window, or turn off your Handy Board.  Before you do any of these things, however, see what happens when you touch your robot’s left touch sensor.  What is this piece of code doing?  The digital function takes a sensor port number as an argument and returns 1 if the sensor is activated, or 0 if it is not.  (Try it out outside of the if statement.  The returned value will be displayed on your computer.)  In Interactive C, the integers 1 and 0 are interpreted as equivalent to true and false (respectively) when they appear in conditional statements.  

9. In order to free our robots from their serial cable bondage, we need a way to package up commands to be run on the Handy Board.  We do this by writing functions and downloading them over the serial cable before disconnecting it.  Whenever the Handy Board is restarted, it checks for a function called main.  We can write and download as many other functions as we want, but there needs to be a main function in order for the Handy Board to operate autonomously.  A good way to program a robot to exhibit behaviors indefinitely is to include an infinite while loop in the main function.  In Interactive C, click on the New button and type the following into the resulting window.

void main() {

   while (1) {

        }

}

Can you fill in the body of the while loop with code to make your robot trace out a square on the ground?  (Note that you no longer have to put all your code on one line!)  Once you’ve written main, save the file somewhere and click on the Download button.  Then disconnect the Handy Board from the telephone cable, and flip the power switch off and then on again to see your code in action.  

10. It’s easy to program your Handy Bug to wander around until its batteries die, as long as you can be sure that it will always be free to move forward unhindered.  Can you write a main program that allows your robot to explore the room without getting stuck against obstacles?

