CS 30 Lab 12 — The Jets and the Sharks

In this lab you'll implement the Jets and Sharks memory model. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

The goal of this lab is to implement the Jets and Sharks memory model described in the article The Appeal of Parallel Distributed Processing by McClelland, Rumelhart, and Hinton. We will construct a neural network that behaves like a memory in which the information shown on page 27 is stored. The architecture of the network is shown on page 28. Our simulation will involve two types of objects: units and connections.

A unit object needs to keep track of several pieces of information:

· A label string such as "George" or "Burglar". For the instance units (the units shown in black on page 28), we will use labels of the form "(george)", "(sam)", etc., to distinguish them from the units representing the names of gang members.

· An activation value representing the unit's current level of activation.

· An external-input value representing the amount of activation currently being applied to the unit from the outside environment.

· An activation-change value to be used when updating the activations of units.

· A list of incoming connections to the unit from other units in the network.

A connection object needs to keep track of the following information:

· The strength of the connection, represented as a positive or negative number.

· The two units at the ends of the connection, called the from-unit and the to-unit.

1. Using the file Labs/Lab12/jets.scm as your starting point, define a basic constructor for unit objects called new-unit. This constructor should take one argument: the unit's label string. For example, to create the Burglar unit, we would do the following:

(define burglar (new-unit "Burglar"))

Units should respond to the following methods:

get-label returns the unit's label string
get-activation returns the unit's current activation level
set-activation sets the unit's activation level to a specified value
get-external-input returns the unit's current external input
set-external-input sets the unit's external input to a specified value
add-connection takes a connection object as an argument and adds it to the unit's list of incoming connections

Your constructor should initialize a new unit's activation level to the resting level, and the external input to 0, with no incoming connections.

 (continued on back)

2. Define a basic constructor for connection objects called new-connection. This constructor should take three arguments: the from-unit, the to-unit, and the initial strength of the connection. For example, to create an excitatory connection from the instance unit for George to the Burglar unit (representing the fact that George is a Burglar), we could do the following:

(new-connection instance-george burglar +1)

Creating the above connection by itself, however, won't do much good. We need to add the connection to the Burglar unit's list of incoming connections:

(send burglar 'add-connection (new-connection instance-george burglar +1))

The function connect-properties in jets.scm is already set up to do this for you. This function creates all of the necessary excitatory connections between units as specified in the table on page 27 of the PDP article.

Connection objects should respond to the following methods:

get-strength returns the strength of the connection
excitatory? returns true if the strength is positive, or false otherwise
get-from-unit returns the connection's from-unit
3. Next, complete the definition of make-inhibitory-cluster, which takes a list of units and creates two-way inhibitory connections between all of the units. This is similar to the make-clique function we wrote in class. To do this, first define a helping function called create-inhibitory-connections that takes a single unit u and a list of units as arguments, and creates mutually inhibitory connections between u and all of the units in the list.

4. The next step is to add methods for updating the activation level of a unit. This is done in two phases: (1) first compute the activation-change of the unit, based on all of its incoming excitatory, inhibitory, and external inputs; (2) then actually update the unit's activation by adding the computed activation-change value to the current activation. We need two methods:

compute-activation-change, which takes no arguments, computes the value of activation-change, which it stores internally in the unit
update-activation, which takes no arguments, adds the activation-change value for the unit (computed by the above method) to the unit's current activation

The details of the algorithm for updating the activation are given on the next page.

Activation Update Algorithm for Jets-and-Sharks Network

Parameters:



external input scale factor (0.4)



excitation scale factor (0.1)



inhibition scale factor (0.1)

MINIMUM
minimum allowable unit activation (-0.2)

MAXIMUM
maximum allowable unit activation (1.0)

DECAY

activation decay factor (0.1)

RESTING
resting activation level of a unit (-0.1)

[image: image1.png]external-input

// compute activation changes for all units

for each unit u {

 set excitation and inhibition to 0

 for each incoming connection c from unit v {

 // ignore connections from units with negative activation

 if activation(v) > 0 {

 // accumulate incoming activation

 if c is excitatory

 add activation(v)*strength(c) to excitation
 else

 add activation(v)*strength(c) to inhibition
 }

 }
 set total-input to *external-input + *excitation + *inhibition

 // compute scaled input to unit u
 if total-input > 0

 set scaled-input to (MAXIMUM - activation)*total-input
 else

 set scaled-input to (activation - MINIMUM)*total-input
 // compute activation change

 set activation-change to scaled-input - DECAY*(activation - RESTING)

}

// update activations of all units

for each unit u {

 add activation-change to activation

 // keep activation within bounds

 if activation > MAXIMUM set activation to MAXIMUM
 if activation < MINIMUM set activation to MINIMUM
}

