CS 30 Lab 11 — Object-Oriented Programming

In this lab you'll learn about object-oriented programming. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

1. The Labs/Lab11 folder contains the example of counter objects that we discussed in class. Copy this folder to your Userspace or Desktop, and look over counter.scm. Be sure you understand how this code works, including the send method.

2. Suppose we want to model bank accounts. The file bankaccount.scm contains a skeleton definition of new-bank-account, which creates a bank account object with a specified opening balance. Bank account objects have three methods: inquiry, withdraw, and deposit. The latter two methods each take a single value representing the amount of money to withdraw or deposit. The inquiry method just returns the current balance. Write the method definitions for withdraw and deposit, and test them out. For example:

(define freds-account (new-bank-account 500))
(send freds-account 'withdraw 100) => ok
(send freds-account 'deposit 200) => ok
(send freds-account 'inquiry) => 600

3. What happens if you try to withdraw more money than is in the account? This is generally frowned on in the real world, so you should make sure your objects only allow a withdrawal if there is enough money in the account. Otherwise, the message "Sorry, insufficient funds" should be returned. For example:

(define freds-account (new-bank-account 500))
(send freds-account 'withdraw 700) => "Sorry, insufficient funds"

4. Of course, in a computer simulation we can do whatever we like. Add a new method called reset-balance which resets the account's balance to its original starting value. Hint: your objects will need to remember their opening balance, in addition to their current balance. For example:

(define freds-account (new-bank-account 500))
(send freds-account 'withdraw 250) => ok
(send freds-account 'withdraw 100) => ok
(send freds-account 'inquiry) => 150
(send freds-account 'reset-balance) => ok
(send freds-account 'inquiry) => 500

If only real bank accounts worked this way!

5. Next, modify new-bank-account so that it creates password-protected accounts. That is, new-bank-account should take an additional argument, as in:

(define freds-account (new-bank-account 500 'open-sesame))

 (continued on back)
The resulting object should process a request only if it is accompanied by the password with which the account was created, and should otherwise return a complaint. For example:

(send freds-account 'inquiry 'abracadabra) => "Sorry, access denied"
(send freds-account 'withdraw 100 'open-sesame) => ok
(send freds-account 'inquiry 'open-sesame) => 400

6. Now try implementing objects that behave like alarm clocks, using alarm.scm as your starting point. An alarm-clock object needs to keep track of three things: the current time (represented as a number starting from 0), the time the alarm is scheduled to go off, and whether the alarm is turned on. The variables current-time, alarm-time, and alarm-set? serve this purpose. Finish the method definitions given in the file, so that they work as described in the comments.

Your objects should work exactly as shown in the following example:

(define clock (new-alarm-clock))
(send clock 'set-alarm 4) => (alarm is set for 4)
(send clock 'tick) => 1
(send clock 'tick) => 2
(send clock 'tick) => 3
(send clock 'tick) => riiiiing!!!
(send clock 'tick) => riiiiing!!!
(send clock 'turn-off-alarm) => ok
(send clock 'alarm-set?) => no
(send clock 'tick) => 6

7. In the world of Hollywood movies, killer robots wreaking havoc and destruction everywhere is unfortunately an all-too-common image. Instead, let's imagine a peaceful robotic being, called a PeaceBot, who wanders the world distributing flowers to whoever it encounters. The file peacebot.scm contains skeleton code for creating new PeaceBots. Each PeaceBot has a name and a supply of flowers (initially 0), and responds to the messages get-name, greet, speak, take-flowers, and give-flowers. Examples of each method are shown below. Finish the definition of new-peacebot so that PeaceBots behave exactly as shown in the following examples (commands typed by the user are shown in boldface):

(define melanie (new-peacebot "Melanie"))
(define fred (new-peacebot "Fred"))
(send melanie 'speak)
I am Melanie the Peacebot and I have 0 flowers
(send melanie 'take-flowers 5)
Groovy, thanks!
(send melanie 'greet fred)
Greetings, Fred, I am Melanie
(send melanie 'give-flowers 3 fred)
Here, Fred, have 3 flowers
Groovy, thanks!
(send fred 'speak)
I am Fred the Peacebot and I have 3 flowers
(send melanie 'speak)
I am Melanie the Peacebot and I have 2 flowers

