CS 30 Lab 10 — Busy Beavers

In this lab you'll investigate certain types of Turing machines called Busy Beavers. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments. [This lab was adapted from The New Turing Omnibus, by A. K. Dewdney.]

Turing machines, running back and forth along their tapes, reading a symbol here and writing a symbol there, are a little like beavers who busily ply the waters between forest and dam, carrying sticks and branches to and fro. Just how busy can a Turing machine be? Some Turing machines are infinitely busy, in the sense that they never halt. Moreover, many of those that do halt may be made busy for arbitrarily long periods by increasing the size of their inputs. Thus it seems sensible to frame this question in the context of an initially empty tape, for all machines that halt with such a tape as input.

The Busy Beaver problem asks what is the maximum number of 1's that any n-state Turing machine can print on an initially blank tape before halting? You might think that Turing machines with only a few states aren't complicated enough to print out very many 1's. We will investigate this problem by simulating busy beaver machines with our UTM program.

1. The Labs/Lab10 folder contains the UTM simulator we developed in class last week. Copy this folder to your Userspace or Desktop. Try running copier-tm with the initial tape vector #(1 1 0 0 0 !), which contains no blank symbols, and observe what happens. As soon as the machine runs out of tape, the program crashes because the head-position index is no longer within a valid range. However, we can work around this problem for copier-tm by just including extra blanks on the tape (as determined by the length of the input string).

2. To simulate busy beavers, we need to fix this problem, because we don't know in advance how much tape a machine will end up using before it halts. To do this, we need a function expand-right, which will take a tape vector as its argument and return a new tape vector twice as long that contains the original tape's symbols plus extra blanks. For example:

(expand-right '#(a b c d)) => #(a b c d _ _ _ _)

Write and test this function. The copy-contents-to! function will come in handy here.

3. Next, modify move-right so that if the machine tries to move off the end of its tape, it first creates a new, expanded tape with the same contents, and then substitutes this new tape for the old one. Test your program to make sure it works on the example from Part 1 above.

4. We can do this for the left side of the tape as well. Write a function expand-left, which works like expand-right, except that it adds blanks to the tape on the left side instead of the right side. For example:

(expand-left '#(a b c d)) => #(_ _ _ _ a b c d)

 (continued on back)

5. Now modify move-left in a similar fashion, so that attempting to move off the left end of the tape automatically doubles the size of the tape first. This is slightly trickier than for move-right, because you can't compute the new position of the tape head by just subtracting one (which would give –1).

Test your code with the machine called busy3-tm in the file busybeavers.scm, which is a 3-state busy beaver. When started on an initial tape of five blanks, #(_ _ _ _ _), it moves one cell to the right, then one cell to the left, then one more cell to the left. At this point, you should see the tape expand to the left. The machine should halt after another 10 steps.

You can also try out christmas-tree-tm and zigzag-tm at this point. However, these machines go into infinite loops, and thus never halt, although they do produce interesting patterns as their tape head moves back and forth across the tape.

6. How many 1's does the busy3-tm machine leave behind on its tape after halting? As it turns out, busy3-tm prints out the maximum number of 1's possible for a 3-state machine. The corresponding values for a few other machine sizes are given below:

of states

max # of 1's printed
 1

 1
 2

 4
 3

 ?
 4

 13
 5

 ?

7. From the table, it seems like small numbers of states only allow a few 1's to be printed out. However, machines with only five states can exhibit much more complicated behavior. Try out the machine busy5-tm1, which is a 5-state busy beaver. This machine runs for more than 11 million steps before it halts, when started on blank tape. How many 1's does it leave behind? Use the function count-ones-starting-at, which we wrote in class last week, to help you out here, since you won't be able to count the 1's by hand. Also, it will probably take 2-3 minutes for busy5-tm1 to run (probably much longer if you use DrScheme, so I'd recommend doing this part in Chez Scheme).

8. The machine busy5-tm2 is also a 5-state busy beaver. This one runs for over 23 million steps before halting, although it doesn't print out quite as many 1's as busy5-tm1. If you have the patience, find out how many it does print.

9. Incidentally, suppose you define functions called ones(n) and steps(n), that tell you the maximum number of 1's printable by a Turing machine with n states, and the number of steps required. The above table shows a few values of ones(n). This is an example of a provably uncomputable function, in the sense that no computer program could ever be written to compute their values for all possible n. Even computing the value of ones(6) or steps(6) is for all practical purposes impossible.

