CS 30 Lab 7 — Implementing a Natural Language System

In this lab you'll implement a simple natural language interface. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

1. Chapter 7 of Concrete Abstractions presents a simple natural language system for asking questions about movies (see pages 187-204). This example illustrates many of the features of rule-based programming, which has been used in artificial intelligence for many years. You'll find the code that we developed in class today in the CS 30 class folder under Labs/Lab07. Copy this code to your Userspace or Desktop. Read through the code until you understand how it works, and try it out in Scheme.

2. After loading in query.scm and moviedb.scm (in that order), start the system by typing (query-loop) and type in the input shown below. Make sure you understand the system's responses, and how the pattern/action rules work. Try changing the (hello ...) pattern or the (lambda (x) x) action procedure in the movie-pattern/action-rules list to see what effect this has on the system's response to the first three inputs shown below.

(hello i must be going)
(hello there)
(hello)
(who is the director of amarcord)
(who is the director of chinatown)
(who is the director of 2001)

3. Add the pattern (who acted in ...) to your program by adding an appropriate rule to the movie-pattern/action-rules list. The action associated with this new pattern should search the database for the specified movie and return a list of the actors. Be sure to test out your program with the new list of rules.

If you ask the system who is the director of Chinatown, you'll get back the response
((roman polanski)), which is a list containing the director's name. This is because movies-satisfying is finding the director of each of the movies called chinatown, even though there's only one. Asking for the actors is even uglier; you get a list containing the list of the actors' names, which are themselves lists (try it).

Let's improve the output of the system by modifying answer-by-pattern so that it checks whether result is a list containing only one element. In this case, we'll just display the element by itself. Change the if test in answer-by-pattern to a cond expression with three clauses that accomplishes this, and then test it out.

 (continued on back)

4. Next, we need to generalize our patterns so that they can contain more than one wild-card symbol. This means that matching a pattern with an input may produce several substitutions. Change input to (list input) in the second cond clause of the substitution function, as shown below:

 ((equal? (car pattern) '...) (list input))

and then rename this function substitutions, in order to emphasize that it now returns a list of substitutions instead of just one. Don't forget to rename the recursive call as well. Also change sub to subs in answer-by-pattern, to reflect this new behavior.

Now we have a problem in answer-by-pattern. We can no longer pass subs directly to the action-procedure by calling (action-procedure subs), because subs is now a list of substitutions, not a single substitution as before, and the action-procedure may be expecting several arguments. We can get around this problem by using Scheme's built-in apply function, which takes a function and a list of arguments, and applies the function to all of the arguments in the list. For example, try out the following examples in Scheme, in order to get the hang of apply:

(apply + '(2 3)) => 5
(apply + '(1 2 3 4 5)) => 15
(apply equal? '((a b c) (a b c))) => #t

Change the call (action-procedure subs) to (apply action-procedure subs) in answer-by-pattern. Test out the system to make sure everything works as before.

5. Now continue the development of the system as explained in the book from page 198 on. The next step is to allow patterns of the form shown below:

(what (movie movies) (was were) made in _)

The (movie movies) list can match either movie or movies, and the _ wild-card symbol can match any single word (as opposed to ..., which can match any number of words). Furthermore, the _ wild-card can appear more than once in a pattern. Modify matches? to account for these possibilities. You will also need to extend the substitutions function accordingly.

6. Work through the rest of the exercises in Section 7.6. Feel free to make up your own patterns and decide how the system should respond in each case, or extend the system in any other way you like. Be creative!
