CS 30 Lab 6 — The Game of Nim

In this lab you'll implement a simple computer game called Nim. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

1. Chapter 6 of Concrete Abstractions describes several variants of the game of Nim (see pages 135-136). We will start out by implementing a simple version that uses two piles of objects, say coins. Two players—you and the computer—take turns removing coins from the piles according to the following rule: each player must take at least one coin each turn and may take more as long as they are all from the same pile. The player who takes the last coin wins.

2. Before we begin, we need to look at a few more features of Scheme. The following three functions are useful for performing input and output:

· (display <expression>) causes <expression> to be evaluated and the resulting value to be printed out on the computer screen

· (newline) causes the cursor to move to the next line of the computer screen

· (read) causes the computer to wait for the user to type in a single S-expression at the keyboard, which is then returned as the value of (read).

The display and newline functions do not return any value themselves; they just cause something to happen on the screen. Make sure you understand this distinction clearly.

In general, lambda and let expressions can have a sequence of expressions in their body. These expressions are evaluated in order, and the value of the last one is returned. This is often useful when using display and newline. For example, the following program asks the user for a temperature value in Farenheit, and then prints out the equivalent Celsius temperature:

(define convert
 (lambda ()
 (display "Please enter a temperature: ")
 (let ((farenheit (read)))
 (display farenheit)
 (display " degrees Farenheit equals ")

 (let ((celsius (* 5/9 (- farenheit 32))))
 (display celsius)
 (display " degrees Celsius")

 (newline)
 'done))))

The value actually returned from calling (convert) is the symbol done. Experiment with the convert function in Scheme, and try out other uses of display, newline, and read to make sure you understand how they work.

 (continued on back)

3. Now we are ready to implement Nim. First we need a way to represent states of the game. A game state contains information about how many coins are currently left in each pile. We will use a simple cons-cell representation, with the number of coins in the first pile stored in the car field, and the number of coins in the second pile stored in the cdr field. This is the first time we have seen cons used with a non-list value as its second argument, but it's really no different from using list values, except that now we get back a number instead of a list when we ask for the cdr of the cell.

The code to implement game states is given on page 152 of Concrete Abstractions. Type in this code and get it running. Try it out by creating a few game states using the function make-game-state. For example:

(define gs (make-game-state 3 5))
(display-game-state gs)
(total-size gs)
(size-of-pile gs 2)
(display-game-state (remove-coins-from-pile gs 4 2))

4. Once you're comfortable with the game state implementation code, type in the code for the game itself given on page 144 and get it running. Note: If you're using Chez Scheme, you will first need to load the file error.ss (available in the Labs/Lab06 subfolder) in order to use the error function as shown in the text.

5. What happens if we try to remove more coins from a pile than are actually in the pile? For example, what would be the result of evaluating

 (remove-coins-from-pile (make-game-state 3 2) 5 1)

Modify remove-coins-from-pile so that such a request would result in just removing all of the coins from the specified pile.

6. The function human-move currently accepts any input entered by the user. It would be better to do some error checking, to ensure that only valid input is accepted. For instance, the pile number entered by the user should be 1 or 2, and the number of coins to be removed should be no more than the number of coins that exist in the specified pile (and no less than 1). In the case of invalid input, the program should print a warning message and ask the user again. Modify human-move to do this. HINT: it may help to define a couple of helping functions here.

7. Work through the exercises in Section 6.5 of the book (pages 156-161). This section describes how to add different kinds of playing strategies to the game to make it more interesting.

