CS 30 Lab 4 — Data Representation

This lab continues the development of the arithmetic expression program from class. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

1. In the CS 30 class folder under Labs/Lab04 you will find the file exps.scm, which contains the arithmetic expression program from today's lecture. Copy this file to your Userspace or Desktop and then test out the code in your favorite Scheme system. Try out valid-exp? on several different arithmetic expressions and non-expressions. Remember that a valid arithmetic expression <exp> is a Scheme expression with one of the following forms:

· <number>

· <variable>

· (<exp> plus <exp>)
· (<exp> times <exp>)
· (<exp> power <exp>)
2. Write the function (count-ops e) that counts the total number of operators in a valid arithmetic expression e. Also write count-plus, count-nums, and count-vars, which count, respectively, the total number of plus operators, numbers, and variables. Examples:

· (count-ops ae8) => 5

· (count-plus ae8) => 2

· (count-nums ae8) => 2

· (count-vars ae8) => 4

3. The definitions for valid-exp? and value (and probably your definitions from part 2 above) are difficult to read, because of all the car's and cdr's in the code. Let's define some helping functions to hide the data representation, in order to make things more readable. We need the following functions:

· (get-op e) takes a compound expression and returns its operator symbol

· (get-exp1 e) takes a compound expression and returns its left subexpression

· (get-exp2 e) takes a compound expression and returns its right subexpression

Write these functions, which are all simple one-liners. Then rewrite valid-exps?, value, and your counting functions from part 2 in terms of get-op, get-exp1, and get-exp2. Isn't the resulting code much easier to read and understand?

4. Using your primitives from part 3, write the function (numbered? e), which takes a valid arithmetic expression and returns true if the expression does not contain any variables. For example, numbered? would return true for (3 plus 4) but false for (3 plus x). Other examples:

· (numbered? ae7) => #t

· (numbered? ae8) => #f
Do not use the functions car or cdr in your definition of numbered?.

 (continued on back)
5. In order to evaluate an expression containing variables, we need to know their values. We can specify these using a lookup table, which is just a list containing pairs of variables and values. For example, the table below specifies that x = 3, y = 4, and z = 5:

 ((x 3) (y 4) (z 5))

Write a function (lookup sym table) that takes a symbol and a lookup table and returns the symbol's value in the table. For example, if the above table is called vars, then

· (lookup 'z vars) => 5

· (lookup 'x vars) => 3

· (lookup 'apple vars) => error

Make sure to test your lookup function thoroughly before going on to the next step!

6. Now rewrite the value function so that it takes an additional argument, which will be a lookup table. When value encounters a variable, it can simply use lookup to retrieve the variable's value from the lookup table. Here is the outline of value:

(define value
 (lambda (e vars)
 (cond
 ...)))

Examples:

· (value ae5 '((x 3) (y 4))) => 25

· (value ae5 '((y 7) (x 10))) => 149

· (value ae8 '((a 2) (b 5) (c 2) (d 0))) => 24
7. There is still a problem if the arithmetic expression happens to contain a variable that is not listed in the table. Write a function covered? that takes an arithmetic expression and a lookup table and returns true if all of the variables appearing in the expression are also in the lookup table, or false otherwise. Examples:

· (covered? '(x plus y) '((x 3) (y 4) (z 5))) => #t

· (covered? 'x '((a 9))) => #f

· (covered? ae8 '((a 2) (b 5) (c 2) (d 0))) => #t

· (covered? ae8 '((a 2) (b 5) (c 2))) => #f
8. Now put the pieces together and write the function evaluate, which takes an expression e and a lookup table var, and evaluates e with respect to the lookup table, after first checking to make sure it is a legal arithmetic expression which is covered by the table. If so, it returns the value of the expression. Otherwise an appropriate error message is returned. Examples:

· (evaluate '(x plus 5) '((x 2) (y 3))) => 7

· (evaluate '(x plus 5) '((y 3))) => not-covered

· (evaluate '(plus x 5) '((y 3))) => invalid-expression
9. Is (plus plus plus) a valid arithmetic expression?

