CS 30 Lab 3 — Structural Recursion

This lab gives you practice with recursion over structured data. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

1. Start a DrScheme session on your computer (choose DrScheme from the top of the Start button menu). From DrScheme's Language menu, select Choose Language (PLT (Textual (MzScheme) and click OK. Then click on the Execute button at the top of the DrScheme window. Click Execute again whenever you make changes to your definitions.

2. Write the following recursive functions, which work with flat lists. Don't hesitate to use helping functions if that would make solving the problem easier.

· (odd-or-even nums) takes a flat list of numbers and returns a new list with odd numbers replaced by the symbol odd and even numbers replaced by the symbol even. Remember that the built-in Scheme functions odd? and even? are available. Example:
(odd-or-even '(1 2 3 5 4)) => (odd even odd odd even)

· (index sym lat) takes a symbol sym and a flat list of symbols lat and returns the index number of the first occurrence of sym in lat, counting from zero. If sym does not appear in the list, then index returns –1. Examples:
(index 'cs30 '(this class is cs30)) => 3
(index 'mango '(apple banana cherry)) => -1
(index 'hello '(hello goodbye)) => 0

· (insert n nums) takes a number n and a flat list of numbers in ascending order, and returns a new list with n inserted into nums at the correct position. Examples:
(insert 5 '(1 3 4 8 9)) => (1 3 4 5 8 9)
(insert 5 '(1 3 5 5 9)) => (1 3 5 5 5 9)
(insert 2 '(6 7 8)) => (2 6 7 8)
(insert 10 '(6 7 8)) => (6 7 8 10)

· (sort nums) takes an unsorted list of numbers and returns a new list with the numbers sorted into ascending order. Example:
(sort '(8 4 5 1 4 2 7)) => (1 2 4 4 5 7 8)
HINT: To sort a list of numbers, first sort the rest of the numbers, then insert the first number into the rest at the appropriate location. Think recursively!

3. Write the following recursive functions, which work with arbitrarily-nested lists.

· (odd-or-even2 nums) takes a nested list of numbers and returns a new flat list, with odd numbers replaced by the symbol odd and even numbers replaced by the symbol even. Example:
(odd-or-even2 '((1 2) ((3)) 5 4)) => (odd even odd odd even)
(odd-or-even2 '(1 (2 (3 4) 5))) => (odd even odd even odd)

 (continued on back)
· (odd-or-even* nums) takes a nested list of numbers and returns a new list with the same nested structure, with odd numbers replaced by the symbol odd and even numbers replaced by the symbol even. Example:
(odd-or-even* '((1 2) ((3)) 5 4)) => ((odd even) ((odd)) odd even)
(odd-or-even* '(7 (2 (3 8) 5))) => (odd (even (odd even) odd))
· (count-all* ls) takes an arbitrary nested list and tells how many items are in the list. Examples:
(count-all* '((3 apple) ((peach 8 6) 9) pie)) => 7
(count-all* '(ginger fred)) => 2
· (count-nums* ls) takes a nested list of atoms and tells how many numbers are in the list. Examples:
(count-nums* '((3 apple) ((peach 8 6) 9) pie)) => 4
(count-nums* '((apple banana) cherry)) => 0
· (addup-nums* ls) takes a nested list of atoms and adds up all of the numbers in the list. Examples:
(addup-nums* '((3 apple) ((peach 8 6) 9) pie)) => 26
(addup-nums* '((apple banana) cherry)) => 0
· (swap* s1 s2 ls) takes two symbols s1 and s2 and a nested list, and returns a new nested list with all occurrences of the s1 symbol replaced by the s2 symbol, and vice versa. Examples:
(swap 'red 'blue '(red (yellow (blue) red)))
 => (blue (yellow (red) blue))
(swap 'orange 'blue '(((red yellow)) blue red))
 => (((red yellow)) orange red)
· (reverse* ls) takes a nested list and returns a "mirror image" of the list, with all of its internal structure preserved. Examples:
(reverse '(a (b (c (d e))))) => ((((e d) c) b) a)
(reverse '((a b c d) e f g)) => (g f e (d c b a))
· (equal-lists? l1 l2) takes two nested lists and returns true if the lists have the same atoms and the same nested structure, or false otherwise. Examples:
(equal-lists? '(a b c) '(a (b c))) => #f
(equal-lists? '(a (b c)) '(a (b z))) => #f
(equal-lists? '(a b c d) '(a b c)) => #f
(equal-lists? '(a (b c) (d)) '(a (b c) (d))) => #t
For this problem, use the file equal.scm as your starting point. You can find this file in the CS 30 class folder under Labs/Lab03.

