CS 30 Lab 2 — Simple Recursive Programming

This lab gives you more practice writing simple recursive programs like the kind from the first homework assignment. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

1. Start a DrScheme session on your computer (choose DrScheme from the top of the Start button menu). From DrScheme's Language menu, select Choose Language (Standard (R5RS) and click OK. Then click on the Execute button at the top of the DrScheme window. The top window is for typing in and editing your Scheme definitions. Make sure to click Execute after making any changes to your definitions.

2. If you haven't finished the first homework assignment, do so now. Be sure to test your programs thoroughly to verify that they work.

3. Do the following problems, and remember to think recursively!

· (times10 nums) takes a list of numbers and returns a new list with each number multiplied by 10. Examples:
(times10 '(1 2 3 4)) => (10 20 30 40)
(times10 '(25)) => (250)

· (add-lists nums1 nums2) takes two lists of numbers nums1 and nums2 and returns a list of the sums of the numbers in corresponding positions. If nums1 and nums2 are not the same length, the "left over" numbers are included as-is. Examples:
(add-lists '(1 2 3) '(10 10 10)) => (11 12 13)
(add-lists '(2 4 6 8 10) '(3 5 7)) => (5 9 13 8 10)
(add-lists '(5) '(1 2 3 4)) => (6 2 3 4)

· (square-all nums) takes a list of numbers and returns a list of the squares of the numbers. Example:
(square-all '(1 2 3 4)) => (1 4 9 16)

· (count-odds nums) takes a list of numbers and tells how many odd numbers are in the list. The built-in Scheme function odd? will come in handy here, which returns true given an odd number, or false otherwise. Examples:
(count-odds '(1 2 3 4 5)) => 3
(count-odds '(2 4 6 8)) => 0
(count-odds '(3 3 3 3 3)) => 5

· (member? a lat) takes an atom a and a list of atoms lat and returns true (#t) if a occurs somewhere in lat, or false (#f) otherwise. Examples:
(member? 'cream '(we all scream for ice cream)) => #t
(member? 'liver '(we all scream for ice cream)) => #f
(member? 'anything '()) => #f

 (continued on back)
· (swap a1 a2 lat) takes two atoms a1 and a2, and a list of atoms lat, and returns a new list with all occurrences of a1 replaced by a2, and vice versa. Examples:
(swap 'red 'blue '(red yellow blue red)) => (blue yellow red blue)
(swap 'orange 'blue '(red yellow blue red)) => (red yellow orange red)

· (count-nums ls) takes a list and tells how many numbers are in the list. The built-in Scheme function number? will come in handy here, which returns true given a number, or false otherwise. Examples:
(count-nums '(a b c 42 d 13 e f 8)) => 3
(count-nums '(x y z)) => 0

· (all-nums? ls) takes a list and returns true if the list contains only numbers, or false otherwise. The Scheme function number? will come in handy here. Examples:
(all-nums? '(1 2 3 4)) => #t
(all-nums? '(2 b or not 2 b)) => #f

· (double-up ls) takes a list and returns a new list with each of the original items x replaced by a list of the form (x x). Examples:
(double-up '(1 2 3 4)) => ((1 1) (2 2) (3 3) (4 4))
(double-up '(bubble toil trouble))
 => ((bubble bubble) (toil toil) (trouble trouble))

· (wrap n a) returns a list with atom a surrounded by n sets of parentheses. Examples:
(wrap 3 'apple) => (((apple)))
(wrap 0 'banana) => banana

· (remove-negs nums) takes a list of numbers and returns a new list with all of the negative numbers removed. The built-in Scheme function < will come in handy here, which takes two numbers and returns true when the first is less than the second. Examples:
(remove-negs '(5 -8 -10 4 2 0)) => (5 4 2 0)
(remove-negs '(-3 -4)) => ()

· (remove a ls) returns a list with all occurrences of atom a removed from ls. Examples:
(remove 'scream '(i scream you scream we all scream for ice cream)
 => (i you we all for ice cream)
(remove 'cherry '(chocolate fudge sundae)) => (chocolate fudge sundae)

· The handout from Gödel, Escher, Bach discusses the Fibonacci numbers (pages 135-136). Write a Scheme program called fibo to compute the nth Fibonacci number, using the recursive definition given on page 136. What is the 25th Fibonacci number?

· The "married" functions F(n) and M(n) are defined on page 137. Write Scheme functions to compute the nth F and M numbers. What is the 50th M number? What is the 50th F number?

· Also on page 137 is the definition of the "chaotic" sequence Q. Write a Scheme function to compute the nth Q number. What is the 25th Q number?

