CS 30 Lab 1 — List Manipulation in Scheme

This lab introduces you to Scheme. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call Sarah or me over for help, answers to questions, or comments.

1. Start a Chez Scheme session on your computer (not DrScheme). From the Start menu,

 select Programs (Chez Scheme (SWL. Type in the following definition, exactly as

 shown:

(define atom?

 (lambda (x)

 (and (not (pair? x)) (not (null? x))))))
 Notice how Scheme automatically indents each line and highlights the parentheses

 as you type. Now you are ready to do some experiments.

2. The list (all these problems) can be constructed by evaluating the expression

 (cons a (cons b (cons c d))), where a is all, b is these, c is problems, and d is ().

 To define a to be all, just evaluate the expression (define a 'all) once at the

 Scheme prompt (don't forget the single ' mark); then evaluate a by itself to verify.

 On a piece of paper, write down how you would construct the following lists:

(all (these problems))

(all (these) problems)

((all these) problems)

((all these problems))
In this and subsequent questions, be sure to test out your answers at the Scheme prompt to verify that they are correct—but only after you have thought about the question first! Don't go on to the next question until you fully understand Scheme's

response. If you're confused about something, just ask!

3. What is (car (cons a l)), where a is french, and l is (fries); and what is
 (cdr (cons a l)), where a is orange, and l is (apples and peaches)?

4. True or false:

(atom? (car l)), where l is ((meatballs) and spaghetti)
(null? (cdr l)), where l is ((meatballs))
(eq? (car l) (car (cdr l))), where l is (two meatballs)
(atom? (cons a l)), where l is (ball) and a is meat
5. What is

(car (cdr (cdr (car l)))) where l is ((kiwis mangoes lemons) and (more))

(car (cdr (car (cdr l)))) where l is (() (eggs and (bacon)) (for) (breakfast))

(car (cdr (cdr (cdr l)))) where l is (() () () (and (coffee)) please)
(continued on back)
6. To get the atom and in (peanut butter and jelly on toast) we can write

 (car (cdr (cdr l))). What would you write to get Harry in l,

where l is (apples in (Harry has a backyard))

where l is (apples and Harry)

where l is (((apples) and ((Harry))) in his backyard)
7. What would you write to get the atom x from l,

where l is (a (b c x) d)

where l is (((x)))

where l is ((a (b)) (x) c)

where l is (a (b (c (d x))))
8. Type the following definitions at the Scheme prompt, exactly as shown (don't forget

 the ' mark):

(define garfield 'cat)

(define cat 'garfield)

 True or false:

(eq? garfield 'cat)

(eq? 'garfield 'cat)

(eq? garfield 'garfield)

(eq? (cons garfield '(cat)) '(garfield cat))

(eq? (cons 'garfield '(cat)) '(garfield cat))

(eq? garfield garfield)

(eq? (car '(garfield cat)) garfield)
9. What does (car ''apple) evaluate to? Why?

10. Try out the following expressions, in the order shown:

(define one 1)

(define two 2)

(list one two)

(list 'one 'two)

(list 'one two)

(list 'one (list one two 'three))

(list (list) (list one) (list one two))
 The list function takes any number of arguments (even zero) and builds a new list

 out of them. It is often easier to use list instead of cons to build lists. Using only

 the list function and quoted atoms (for example, 'bacon), write expressions to

 create all of the lists shown in questions 2 and 5 above. For example, to create the list

 (all (these problems)), you would evaluate the Scheme expression

 (list 'all (list 'these 'problems)).

