
© 1993-2005 KIPR
1

Getting Started with the
XBC v 2.0 and IC

KISS Institute for Practical Robotics

1818 W Lindsey, Bld D Suite 100

Norman, OK 73069 USA

1-405-579-4609

© 1993-2005 KIPR
2

Using this documentation

• This is a getting started manual.

• More complete software documentation is
available under the help manual when
running IC

• The software examples in this manual are
for illustration only. They may not be
absolutely correct or complete.

© 1993-2005 KIPR
3

IC Software Package
• The IC software is “donation ware”

– It is free and can be freely distributed and used for personal and
educational purposes

– If you like it and are looking for a tax deduction, please consider the KISS
Institute

– If you would like to use IC in a commercial product, contact the KISS
Institute about licensing

• The latest version may be found at http://www.botball.org/ic/

• IC (Interactive C) is a C compiler/interpreter

– Implements most of the ANSI C language

– Interfaces to both the Handy Board and XBC (and others)

– Interactively guides hardware setup requirements, loading firmware
(“pcode” interpreter) and key library functions onto the processor board

– Provides an editor and on-line documentation

– Provides an interactive environment for testing and debugging

© 1993-2005 KIPR
4

Setting Up

• IC runs partly on the PC and partly on the robot board

• The IC editor can be used without an attached robot board

• Code can be checked for syntax errors

• To check for logic errors you:
– Can simulate execution of your program using built in simulator,

or

– Attach a robot and run your program

• The XBC needs to have firmware loaded before programs
can be downloaded onto robot

© 1993-2005 KIPR
5

To Install IC
• On a Mac OSX (10.1 and higher)

– Double click on InteractiveC5xxx.tar.bz2 file
• The IC5 folder can be placed in your Applications folder, or

anywhere else convenient
• Note: keep the app and the library folders in the same IC5 folder

(programs you write can be kept wherever you wish)

• On Windows (Win 98 and higher)
– Double click on InteractiveC5xxx.exe

• IC5 will be added to your program menu
• An IC5 shortcut will be placed on your desktop

• On Linux
– Contact support <at> kipr.org

© 1993-2005 KIPR
6

XBC (v2.0) Checklist
• XBC

– XBC main board with camera
– XPORT FPGA (small circuit board screwed on top)
– Game Boy Advance (XPORT slides into game slot)
– Battery box (mounted on bottom) w/Lego holes

• 9 pin M-F serial cable
• AC Adapter (little. Note: +15v center, 900ma)

© 1993-2005 KIPR
7

XBC (V2.0) Board Setup

XBC w camera & GBA:

 7.2V NiMH 6 cell Battery

Charger:

15V - 900 mA

Serial Cable

© 1993-2005 KIPR
8

XBC (v1.0) Jumper Settings
(visually inspect to see if settings are correct)

hidden pin is

hard to spot!

Bottom 2

Top 2

Bottom 2

Top 2

© 1993-2005 KIPR
9

Charging XBC (v2.0) Battery Pack

• Charging is best accomplished using XBC 15v AC charger
plugged into XBC with XBC turned off.

• Yellow charging light flashes when battery pack is being
charged.

• Yellow charging light turns solid on when battery pack is 60%
charged.

• To achieve a full charge, allow the XBC to charge for 3 hours

• The battery pack installed in your XBC is a 2000mAh 7.2V
NiMH Pack.

© 1993-2005 KIPR
10

XBC (v 2.0)
(with GBA & Camera)

 charge port

 (under Gameboy)

servo ports

(wire order B|R|Y)

serial

connector

on

power switch

off

3 motor ports 1

2 0

floating

analog (0-1

analog

ports (2-7)

digital ports

(8-15)

camera

© 1993-2005 KIPR
11

Download the Firmware

• Make sure your XBC is connected to your personal
computer via 9-pin serial port cable (and a USB to serial
converter if needed)

• Make sure the XBC is turned off

• Select Change controller type from the
Settings menu and select the XBC PWM/PID

• Select the appropriate serial port

• Select Download Firmware from the Settings
menu

• Follow the onscreen directions

© 1993-2005 KIPR
12

XBC Main Display

• The XBC menu is
navigated using
the up and down
buttons of the
direction pad (left
of display) and
the A button to
select

Run downloaded
program Displays printf

Accesses vision menus

Save or restore persistent
state to memory (using
persistent variables)

© 1993-2005 KIPR
13

XBC Status Display

• Pressing L & R buttons
(top edge of GBA) scroll
through three displays at
the bottom of the GBA
screen
– IC Status
– Sensor Status
– Motor Status
– Power & Servos

Status window

© 1993-2005 KIPR
14

XBC Sensor Status Display

Analog Port Numbers

Analog port values Digital port numbers (hex)
Background color indicates state

© 1993-2005 KIPR
15

XBC Motor Status Display

Motor number

Motor speed (0-100)

Motor position

© 1993-2005 KIPR
16

XBC Power & Servos Display

Servo number

Servo position

© 1993-2005 KIPR
17

Color Space

Hue=0

Hue=360

Sat=0
Val=224

Sat=224
Val=224

Sat=224
Val=0

Note: 224 is
the range of
values the
camera pixels
put out in each
of R, G & B

© 1993-2005 KIPR
18

Color Blobs

• In color tracking, one selects a rectangular
piece of color space and segments all of the
pixels in the image that fall within that piece

• Contiguous pixels are combined into blobs
• Each blob has a size, position, number of

pixels, major and minor axis, etc.
• These blobs correspond to objects seen in

the image that are the desired color

© 1993-2005 KIPR
19

Color Models

• The XBC can segment the image using three
different pieces of color space (each is called a
color model) simultaneously

• It can track a number of blobs from each color
model

• It can display the video (raw, processed,
alternating (flashes between raw & processed),
and segmented into blobs) on the GBA display

© 1993-2005 KIPR
20

More on Color Models
• A Color Model-HSV specifies a bounding box in the color selection

plane

• Moving either edge towards the center line constrains the range of
accepted color values to only include more vivid colors (ie only
accept things that are more like Astro Brights paper).

• If everything you want is being accepted but so is a lot of other junk
you don't want, move the corners closer to the center.
– Moving either edge towards the edges loosens the model to include less

vivid colors.

– Moving the left edge out accepts colors that are closer to pastel than what
is currently accepted.

– Move the right edge out accepts darker colors than what is currently
accepted.

– Moving the top and bottom edges up and down changes the range of hues
accepted by the model.

© 1993-2005 KIPR
21

Trying Out Color Vision (1)

1. Parts: XBC; White piece of paper; Solid colored object
2. Turn on XBC and select (use the pad to scroll down, then press the A

button when the right menu is highlighted) the Vision menu
3. Select Camera and live video and current values will be displayed
4. Point the camera at the white piece of paper
5. Press the Start button to initiate white balance calibration

1. “STARTING CALIBRATION” will print at the bottom of the screen
2. After about 10-20 seconds when it says “DONE” the calibration is complete and

the red/blue color temperature values are locked in
3. If unsatisfied, retry calibration or experiment with turning AWB (Auto White

Balance) to 1 or 0 with the right and left direction pad buttons. While AWB=1
the red/blue values will react to what the camera sees, when AWB changes to 0
it locks in the red/blue values

4. When satisfied, press B to go back to the menu
5. To preserve the camera settings across reboot, select Save to Flash under the

Color Model menu. Whenever you do this both the camera settings and color
models will be preserved

© 1993-2005 KIPR
22

Trying Out Color Vision (2)

1. Press the B button till you get to the menu that
has Live Video as its top item

2. Select Color Model and then Restore to Default
3. Press B then select Live Video and see what the

camera sees
4. Press B and then select Processed video to see

the image segmented
5. Press B and then select Blob tracking to see how

those segments are broken into blobs

© 1993-2005 KIPR
23

Trying Out Color Vision (3)
1. Press the B button and select Color Model and then Modify Model 0
2. Follow the onscreen instructions to modify the color model:

1. The start button chooses symmetrical Move or Resize modes for the box
2. L & R buttons switch you to a corner move (upper left or lower right) mode
3. The D-pad is used to Move the box, Resize, or move the corners

3. The A button cycles between live, processed, or combined video
4. Do training by

1. opening up the S and V ranges by moving the side edges outwards
2. opening up the top and bottom edges as far as they go (MAX_HRANGE),
3. then moving the whole range up and down until it includes what you want to

accept.
4. Then close down the top and bottom edges until they're as close together as

they go before cutting out part of what you want to keep.
5. After you have the top and bottom set up well, start moving the side edges

closer to the center until you have cut out everything you want to get rid of.

© 1993-2005 KIPR
24

Onscreen Instructions

© 1993-2005 KIPR
25

Move Mode Mode Designator

© 1993-2005 KIPR
26

Processed Video

© 1993-2005 KIPR
27

The GBA
L “shoulder” button

R “shoulder” button

right button

left button

up button

down button

A button

(choose)

B button

(escape)

start button

select button

© 1993-2005 KIPR
28

XBC Buttons
• The XBC has 6 buttons and one “D-pad” (directional pad)

which is actually just 4 buttons – thus there are a total of 10
buttons on the XBC

• The start button only starts (or stops) the program loaded on
the XBC

• The select button moves you back and forth between the
program window and the menu window

• When in menu mode the other buttons have miscellaneous
uses (for example A usually selects that menu option and B
moves back to the prior menu, the up button moves up, down
moves down, …)

© 1993-2005 KIPR
29

XBC Buttons & More

• In an IC program, the programmer can use 8 (of the 10)
XBC buttons – the only two that the programmer can
NOT use/access are the start and select buttons

• a_button(), b_button(), r_button(),
l_button(), up_button(),
down_button(), left_button(),
right_button()
– All return 1 if currently pressed down, 0 otherwise

• Analog port 7 is reserved for battery voltage and the
function power_level()

© 1993-2005 KIPR
30

Compatible Button Functions

• The function choose_button() returns 1
when the following button is pressed
– The A button on the XBC

• The function escape_button() returns 1
when the following button is pressed
– The B button on the XBC

© 1993-2005 KIPR
31

Useful Library Function:
sleep(seconds);

• sleep() delays the function’s execution for an
amount of time equal to the number of seconds
(expressed as a float) given as an argument

• msleep() delays the function’s execution for
an amount of time equal to the number of
milliseconds (expressed as a long) given as an
argument. Note the time passed to msleep must
either be a variable declared as type long or a
number written as a long, e.g., 123456L, or 42L

© 1993-2005 KIPR
32

Interacting with IC

• Click on the Interaction tab
• Make sure controller is connected and on
• Just type into area at bottom of IC window
• Simple expressions

9/5;

• Making noise
beep();

• Printing to the LCD screen
printf("I’m printing!!\n");

© 1993-2005 KIPR
33

Helpful Features of IC

• Tools menu
– List functions
– List global variables
– List loaded files
– Upload Arrays

• Settings
– Variable font size
– Download firmware

• Simulator
• IC Manual

© 1993-2005 KIPR
34

Sensors

© 1993-2005 KIPR
35

• Detachable sensors use a keyed connector (2 wire or 3 wire)

– Analog sensors:
• Light (XBC 2-6)
• IR reflectance (XBC 2-6)

– Floating analog sensors:
• Optical rangefinder (XBC 0-1)

– Digital sensors:
• Touch (XBC 8-15)
• Slotted encoder (XBC 8-15)

– Special sensors:
• Ultrasonic rangefinder (sonar)

– (XBC 8-15)
• XBC Camera

– (camera port on XBC)

Detachable Sensors

© 1993-2005 KIPR
36

• Analog sensor
• Connect to ports

– XBC 2-6

• Access with library function analog(port#)
– On XBC you can also use analog12(port#) for higher

resolution

• Low values indicate bright light
• High values indicate low light
• Sensor is somewhat directional and can be made more so

using black paper or tape or an opaque straw or lego to
shade extraneous light. Sensor can be attenuated by
placing paper in front.

Light Sensors

© 1993-2005 KIPR
37

• Connect to ports
– XBC 2-6

• Access with library function analog(port#)
– On XBC you can also use analog12(port#) for higher

resolution

• Low values indicate bright light, light color, or close
proximity

• High values indicate low light, dark color, or distance of
several inches

• Sensor has a reflectance range of about 3 inches

IR Reflectance Sensor “Top Hat”

© 1993-2005 KIPR
38

• Floating analog sensor
• Connect to ports

– XBC 0-1

• Access with library function analog(port#)
– On XBC you can also use analog12(port#) for higher

resolution

• Low values indicate large distance
• High values indicate distance approaching ~4 inches
• Range is 4-30 inches. Result is approximately 1/d2.

Objects closer than 4 inches will produce values
indistinguishable from objects farther away

Optical Rangefinder “ET”

© 1993-2005 KIPR
39

• Timed analog sensor

• Another Position Sensing Device

• Ultra sonic rangefinder for XBC (1 plug with 4 pins)
– On XBC plug into any digital port

• Access with library function sonar(port#)on XBC

• Returned value is distance in mm to closest object in field of view

• Range is approximately 30-2000mm

• No return (because objects are too close or too far) gives value of
32767

Ultrasonic Rangefinder (Sonar)

© 1993-2005 KIPR
40

Touch Sensors

• Digital sensor
• Connect to ports

– 8-15 on XBC

• Access with library function
digital(port#)

• Three form factors in kit
• 1 indicates switch is closed
• 0 indicates switch is open
• These make good bumpers and

can be used for limit switches on
an actuator

© 1993-2005 KIPR
41

Break Beam Sensors
• Digital (break beam) sensor
• Connect to ports

– 8-15 on XBC

• Access with library function
digital(port#)

• 1 indicates slot is empty
• 0 indicates slot is blocked
• These can be used much like touch

sensors (if the object being touched fits
in the slot)

• Special abilities when used as encoders
– See encoder section for more details

© 1993-2005 KIPR
42

• Black gear motors resemble servos -- but they are
not (identify by gray cable color)

• Motors with gray cables plug into the Handy
Board or XBC

• Use Motor channels 0, 1, 2 & 3
• Full Forward: fd(3);
• Full Reverse: bk(3);
• 2/3 Reverse: motor(3,-66);

– On XBC this means run the motor in reverse at 66% scaled duty cycle

• Turn off motor: off(3);
• Turn off all motors: ao();

DC Motors

© 1993-2005 KIPR
43

XBC BEMF Motor Functions
• The XBC uses intermittent measurements of the motor back EMF to

estimate motor position and velocity. On the XBC, BEMF is used to
implement velocity and position control.

• For the black gear motors, one rotation = about 1100 “ticks”
• The velocity measure is ticks per second (magnitude 0-1000)
• Get the position of motor 3:

get_motor_position_counter(3);
• Set the value of motor 3 counter to a desired value:

set_motor_position_counter(3,0L);
• Move the motor backwards at a speed of 15rpm (275 ticks/sec) for 1

revolution : move_relative_position(3,275,-1100L);
or mrp(3,275,-1100L);

• Move a motor indefinitely at a given velocity (e.g., backwards at
1rpm (18 ticks/sec) (wow that is slow!) mav(3,-18); or
move_at_velocity(3,-18);

• Stop and hold motor 3 at its current position: freeze(3);
– Note the motor is powered but not moving. Use off when you do not

need to keep a motor frozen.
• See XBC Motors in the Appendix for more details

© 1993-2005 KIPR
44

Position Servos
• Plug-in order in the servo ports is black, red, yellow with black toward the left

– Ports are 0-3 on XBC

• Enable Servos:
enable_servos();

(activates all servo ports)

• Disable Servos:
disable_servos();

(de-activates all servo ports)

• Set servo position:
set_servo_position(2,127);

(moves servo 2 to position 127, position range is 0-255)

• Get servo position:
get_servo_position(2);

(returns an int corresponding to the position at which that servo is set)

• Note: Servos may run up against their stops at low or high position values.
Giving a servo such a position command will suck power at an alarming rate!

• Note: Servos acting weird or not working indicates the battery is low

© 1993-2005 KIPR
45

Using Encoders
• For a striped encoder wheel

– use the top hat reflectance sensor

• For a perforated encoder wheel, use the slot
sensor

• XBC: Connect to ports 8-15 (encoder# is the
port number)
enable_encoder(encoder#);

– enable an encoder only once...unless you
disable it between enables

disable_encoder(encoder#);

read_encoder(encoder#);

– returns the number of transitions
reset_encoder(encoder#);

– sets that encoder’s count back to 0

The slot sensor will
fit across a Lego
wedge belt wheel

© 1993-2005 KIPR
46

 XBC Camera

© 1993-2005 KIPR
47

XBC Camera
1. Create a color model for channel 0 that sees

something orange
2. Load xbctest.ic onto your XBC
3. Run the program
4. Select the vision test
5. Select the correct channel/model to see orange
6. Follow on screen directions to get data on the

blobs
7. If you like your model, save it to flash
8. For more info, see XBC Camera in IC Help

© 1993-2005 KIPR
48

Which Color Model?
• The XBC stores 3 channels of color (0, 1, 2)
• There are 3 models maintained for each channel:

1. The currently active model (the one you see in the
modify model menu)

2. The model in flash (you can save the currently active
model and camera settings using the save to flash
menu item or make them active by loading from flash)

3. The default model and camera settings which are
made active by selecting restore to default

© 1993-2005 KIPR
49

Example Using XBC Camera Functions
/* print out the following information

 for the first (largest) blob on channel 0

 x position of center, y position of center, size

 and the total number of blobs being tracked on channel 0 */

/* load required library for vision */

#use "xbccamlib.ic"
void main() {
 init_camera(); // initialize camera
 while(!b_button()) {
 track_update(); // update info from camera queue
 printf("%d %d %d %d",
 track_x(0, 0), // arguments are color channel…
 track_y(0, 0), // …and blob number (largest first)
 track_size(0, 0), // size of largest blob
 track_count(0)); // total # of blobs on channel 0
 sleep(0.1); // sleep to get fresh data
 display_clear(); // keep the display nice
 }
}

© 1993-2005 KIPR
50

#define Preprocessor Statement

• Purpose of #define
– Equate a meaningful name to repeatedly encountered text

• #define READING analog(3)
– Before compiling, the preprocessor replaces all occurrences of READING

with analog(3)

– eg.

if (READING < 30) { . . .

is equivalent to

 if (analog(3) < 30) { . . .

– May reduce overhead (see the IC on-line programmer reference
manual)

• Has a limited macro capability

• In IC5 #define affects all code loaded from #use

© 1993-2005 KIPR
51

Uploading Arrays

© 1993-2005 KIPR
52

Global Arrays

• Global arrays are still in memory after the
program exits

– IC doesn’t clear the stack until next execution of
program entry point

• Global arrays can be uploaded from the XBC and
placed in spread sheet

• You can also list global variables, functions,
etc…

© 1993-2005 KIPR
53

Programming Example

• Create a global array:
int sensors[200][2];

• Write a program that will loop through the rows of the array and put
the current sonar value in sensors[j][0] and the ET sensor value
in sensors[j][1].

• Attach the sensors to the board, run the program
• Upload the array
• Paste the data in Excel and chart the data
• Compare what values of the ET sensor correspond to distances as

measured by the sonar

© 1993-2005 KIPR
54

ET vs Sonar

#use "pause.ic" /* load pause function */

int sensors[200][2]; //data array

void main()

{

 int idx;

 pause();

 for(idx=0; idx<200; idx++) // start the loop

 {

 sensors[idx][0]=analog(0); // ET sensor on XBC

 sensors[idx][1]=sonar(15); // sonar on XBC

 sleep(0.05);

 } // end the loop

 beep();

}

© 1993-2005 KIPR
55

Uploading Global Arrays
1. Run a program to create or gather data in an

array

2. After the program is finished or paused,
connect XBC to computer

3. From the Tools tab choose Upload Array

4. Pick the array to upload

© 1993-2005 KIPR
56

5. Click Upload Array

6. Choose how to save the
data

7. View data

Uploading Global Arrays (cont.)

© 1993-2005 KIPR
57

Notes on Uploading Global
Arrays

• After uploading program to XBC, leave IC
window open

• The Array must be a Global Array

• Only one array can be uploaded at a time, but you
can go back to upload multiple arrays

• To open a CSV file in Excel, you must select
“Text Files” file types in the Open file window

© 1993-2005 KIPR
58

Processes

© 1993-2005 KIPR
59

IC: Processes
• IC functions can be run as processes operating in parallel (along with

main)

– The computer processor is actually shared among the active
processes

– main is always an active process

– Each process, in turn, gets a slice of processing time (5ms)

• A process, once started, continues until it has received enough
processing time to finish (or until it is “killed” by another process)

• Global variables are used for interprocess communications

© 1993-2005 KIPR
60

IC: Functions vs. Processes

• Functions are called sequentially
• Processes can be run simultaneously

– start_process(function-call);

• returns the process-id

• processes halt when function exits or parent process exits
– processes can be halted by using

kill_process(process_id);

• hog_processor(); allows a process to take over the CPU for an
additional 250 milliseconds, cancelled only if the process finishes or
defers

• defer(); causes process to give up the rest of its time slice until
next time

© 1993-2005 KIPR
61

IC: Process Example
#use pause.ic

int done; /* global variable

 for interprocess communication */

void main()

{

 pause();

 done=0;

 start_process (ao_when_stop());

 while (!done){

. . . more code (involving motor operation) . . .

 }

}

void ao_when_stop()

{

 while (escape_button() == 0); /* wait for stop button */

 done=1; /* signal other processes */

 ao(); /* stop all motors */

}

© 1993-2005 KIPR
62

Simple Process
Example

#use pause.ic
int done; /* global variable for interprocess communication */
void main() {
 pause();
 done = 0;
 start_process (ao_when_stop());
 while (done == 0) { /* loop until stop */
 motor(3,50);
 sleep(5.0);
 if (!done) {
 motor(3,-50);
 sleep(5.0);
 }
 }
}
void ao_when_stop() /* stops motors at button press even if
 main function is in middle of sleep

statement */
{ /* wait for stop signal */
 while ((choose_button() == 0) && (done == 0));
 done = 1; /* signal other processes */
 ao(); /* stop all motors immediately*/
}

© 1993-2005 KIPR
63

XBC Camera Extension Cable

© 1993-2005 KIPR
64

XBC Camera has Keyed
Connector

• XBC Connector has pin 19
filled in

• Camera is missing pin 19
• Camera only fits in one way

(hanging down)
• Never force the camera into

connector
• Always unplug and turn off

XBC before connecting or
disconnecting Camera!

© 1993-2005 KIPR
65

Extension Cable (1)

• Camera has 32 pin
connector

• Cable is 34 connector

• When looking into
camera lens, extra
column of pins is on
the right

© 1993-2005 KIPR
66

Extension Cable (2)

• Camera connector on
XBC has 32 holes

• Cable connector has 34
pins

• Filled hole 19 & missing
pin help with alignment

• Extra pins go off to the
right, when looking into
camera (pins are hidden
by connector in this view)

© 1993-2005 KIPR
67

Extension Cable (3)
• Cable allows camera to be pointed independently of the position

of XBC

• Alignment pins help assure correct orientation

• If camera does not fit in, you probably have something misaligned

• Always turn off power before adding or removing camera or
cable!!

© 1993-2005 KIPR
68

IC5 Processor Simulator

© 1993-2005 KIPR
69

Using Simulator
• Select processor you wish to use
• You may cancel out of serial port selection
• Open in IC the program file you want to simulate (the file you would

download onto your board)
• Click on the simulate button
• After simulator has loaded, press execute button to run your program
• Click on button or sensor inputs to simulate input to robot
• View motor speeds, servo positions, globals and display as program

executes.
• Pause button will halt program execution (to allow time for examining

or changing state)
• Hit execute again to resume
• Clock and sleep functions operate on normal time
• The speed of CPU functions (e.g., looping through statements)

depends on the speed of your computer

© 1993-2005 KIPR
70

Simulator Limitations

• No camera input

• Many functions that depend on BEMF feedback
will not operate as they do on the robot

• Timing of non-clock dependent operations differs
from robot

• Simulator library functions may not be quite as up
to date as actual processor libraries

© 1993-2005 KIPR
71

Simulator Benefits

• Allow testing of many aspects of a
program’s logic without needing robot
hardware

• Many people can work on software and
debug and test their programs at once

• Excellent software teaching tool

© 1993-2005 KIPR
72

Simulator Example (1)

1.) Open the file you want run
in the simulator

2.) Then press the
Simulate button

© 1993-2005 KIPR
73

Simulator Example (2)

Press execute to
start the program

Pause stops the program, Execute
will restart it where it was

Reset stops the
program and
reloads the code

Cancel stops the
sim and brings you
back to the normal
IC window

Motor speed settings
show up here

Print statements
show up here

© 1993-2005 KIPR
74

Simulator Example (3)

The globals tab shows the values of globals and
allows them to be changed

Button A is being pressed by
hitting the up arrow by its value.
(Don’t forget to release the button
by clicking on the down arrow)

Analog and digital sensor values
can be input by clicking or typing
in the appropriate box

© 1993-2005 KIPR
75

Simulator Example (4)

Input for special sensors like knob or sonar
can be made at the appropriate box

Vision functions can be called, but
there is no way to update vision
data (no camera simulator)

The Sim Interaction window
operates similarly to the
interaction window when a board
is connected

© 1993-2005 KIPR
76

XBC Motors

© 1993-2005 KIPR
77

XBC Has Two Kinds of Motor
Commands

• PWM Commands
– Similar to those on

Handy Board

– Changes the duty
cycle of the PWM to
change motor behavior

– Commands include:
fd, bk, motor,

off, and ao

• BEMF PID Commands
– These commands actively

adjust to drive motor at desired
speed or desired distance

– PWM signal sent to the motor
automatically varies as needed

– Behavior of commands does
not vary with battery level or
most environmental factors

– Commands are detailed on
next page

© 1993-2005 KIPR
78

BEMF Commands (1)

• clear_motor_position_counter(3)

– This clears the position counter for motor 3 to be 0

• get_motor_position_counter(3)

– This returns a long integer which is the values of the

position counter for motor 3

• set_motor_position_counter(3,200L)

– This sets the position counter for motor 3 to the long

value 200. This function is rarely used -- usually the

only value you want to set a counter to is 0, which is

best done using clear_motor_position_counter

© 1993-2005 KIPR
79

BEMF Commands (2)

• move_at_velocity(3,123)

– This will try and move motor 3 forward at 123 ticks per second.
If the motor velocity is affected by outside forces, the duty cycle
of the PWM being sent to the motor will be changed as needed to
try and keep the motor velocity will be changed the clears the
position counter for motor 3 to be 0

– Note that velocity values are integers between -1000 and 1000

– Note that this command is terminated by any other PWM or
BEMF command that moves this motor.

– Note that performing a set_motor_position_counter or a
clear_motor_position_counter while
move_at_velocity is active might cause erratic behavior.

• mav(3,123)

– This is shorthand way of doing move_at_velocity

© 1993-2005 KIPR
80

BEMF Commands (3)
• move_relative_position(3,123,-369L)

– This will try and move motor 3 backwards at 123 ticks per second until it has
moved 369 ticks behind where it was when the commands was issued. The
second argument (123 in the example) is a speed, not a velocity. The third
argument is a long corresponding to the distance to move. The sign of the

position indicates whether or not the motor should turn forwards or
backwards.

– Note that speed values are integers between 0 and 1000

– Note that this command does not block but takes time (the example values
should take about 3 seconds). This command will finish when the destination
position is reached or will be terminated early by any other PWM or BEMF
command that moves this motor before the goal is reached.

– Note that performing a set_motor_position_counter or a
clear_motor_position_counter while move_relative_position is
active might cause erratic behavior.

• mrp(3,123,-369L)

– This is shorthand way of doing move_relative_position

© 1993-2005 KIPR
81

BEMF Commands (4)
• move_to_position(3,123,-369L)

– This will try and move motor 3 in whichever direction is needed at 123 ticks per
second until the motor counter has reached -369. The second argument (123 in the
example) is a speed, not a velocity. The third argument is a long corresponding to the

goal position as specified by the motor counter.

– The sign of the position does not indicate the direction of movement. Movement
direction is automatically determined by the sign of goal position minus current
position.

– Note that speed values are integers between 0 and 1000

– Note that this command does not block but takes time (the time is roughly the
difference between the goal and current positions divided by the speed). This
command will finish when the destination position is reached or will be terminated
early by any other PWM or BEMF command that moves this motor before the goal is
reached.

– Note that performing a set_motor_position_counter or a
clear_motor_position_counter while move_relative_position is active
might cause erratic behavior.

• mtp(3,123,-369L)

– This is shorthand way of doing move_to_position

© 1993-2005 KIPR
82

BEMF Commands (5)
• get_motor_done(3)

– This function returns 0 if a BEMF command is in progress on motor 3 and 1 otherwise

– If a motor is moving under velocity control (e.g., mav) then get_motor_done will
return 0 until that motor command is terminated

– If a motor is moving under position control (e.g., mrp or mtp) then get_motor_done
will return 0 until that motor command is terminated or the motor reaches the goal
position.

– If a motor is moving under PWM control (e.g., fd, bk or motor) then
get_motor_done will return 1

• block_motor_done(3)

– This function blocks (i.e., your program will not go onto the next statement) until the
currently executing BEMF motor command terminates.

• bmd(3)

– This is shorthand way of doing block_motor_done

– If a bmd(3) immediately follows a mrp(3,500,3000L) then the bmd command will
block until the motor has moved all 3000 ticks (about 6 seconds for this example)

– If a bmd(3) immediately follows a mav(3,123) then the bmd will not terminate
(unless killed by another process) and your program will hang with the motor running

© 1993-2005 KIPR
83

BEMF Commands (6)
• freeze(3)

– This function immediately stops the motor then tries to keep the motor at its
current position moving at zero velocity then off in that it actively powers
the motor to stay where it is. It will resist backdriving.

– This function uses power

– freeze will continue to control the motor until it is terminated by another
motor command.

© 1993-2005 KIPR
84

XBC Motor Examples (1)

/* This function moves the motor 2 2000 ticks at a

 speed of 500 ticks per second. This function

 will take about four seconds to terminate

*/

void move2000ticks()
{
 mrp(2,500,2000L);
 bmd(2);
}

© 1993-2005 KIPR
85

XBC Motor Examples (2)

/* This function moves the motor 2000 ticks at a

 speed of 500 ticks per second. This function

 will take about four seconds to terminate unless

 digital(15) returns 1 first, in which case the

 motor will immediately stop and the function will

 return

*/

void move2000ticks_bump()
{
 mrp(2,500,2000L);
 while(!get_motor_done(2) && !digital(15)){}
 off(2); //only needed if digital(15) is hit
}

© 1993-2005 KIPR
86

XBC Motor Examples (3)

/* This function moves the motor forward 3300 ticks

 (about 3 revs) and then moves it backwards the

 same amount

*/

void back_and_forth_three()
{
 mrp(2,500,3300L);
 bmd(2); // wait for mrp to finish moving
 mrp(2,500,-3300L);
 bmd(2); // wait for mrp to finish moving
}

© 1993-2005 KIPR
87

XBC Motor Examples (4)

/* This is a GOTCHA!!!!!!

 This function will only turn backwards about

 3 revs (it will never turn forwards) because

 there is no delay between the forward and the

 backwards mrp commands, so the first mrp command

 is immediately overridden by the second mrp

*/

void back_and_forth_three()
{
 mrp(2,500,3300L); // start going forward
 mrp(2,500,-3300L); // cancel that, go backwards
 bmd(2); // wait for mrp to finish moving
}

© 1993-2005 KIPR
88

XBC Motor Examples (5)
/* This function moves the motor forward at full

 speed for 5 seconds, Prints out the distance

 traveled and then runs the motor in

 reverse at 100 ticks/sec the exact same distance

*/

void back_and_forth_the_same_dist()
{
 // clear motor counter (set to 0)
 clear_motor_position_counter(2);
 fd(2); // turn forward at full speed
 sleep(5.0); // keep turning for 5 secs
 off(2); // turn the motor off
 printf("dist=%d\n",
 (int)get_motor_position_counter(2));
 mtp(2,100,0L); // move back to position 0
 bmd(2); // wait for mtp to finish moving
}

© 1993-2005 KIPR
89

XBC Motor Examples (6)
/* This function takes a float as argument and turns the bot

 clockwise that much in place. Assume wheel radius is 50mm, left

 and right wheels are 200mm apart, left wheel is on motor 1

 and right wheel is on motor 2 and one wheel rotation is 2000 ticks

*/

void rotate_bot(float turns)
{
 float half_width, radius, pi, ticks_per_robot_rev;
 float ticks_per_wheel_rev, robot_rev_circum, wheel_circum;
 long ticks_to_turn;
 //put in pre-defined values
 half_width=100.; radius=50.; pi=3.1416; ticks_per_wheel_rev=2000.;
 //calculate circumferences and ticks
 wheel_circum=pi*radius*2.0;
 robot_rev_circum=half_width*pi*2.0;
 ticks_per_robot_rev=
 ticks_per_wheel_rev*robot_rev_circum/wheel_circum;
 ticks_to_turn=(long)(turns*ticks_per_robot_rev);
 mrp(1,400,ticks_to_turn); //move left motor forward
 mrp(3,400,-ticks_to_turn); //move right motor backwards
 bmd(1); bmd(3); //wait for both motors to complete moves
}

