
Derivation of the Backpropagation Learning Rule

Notation

Forward pass: given input pattern x, compute output activations

1. Sum of all incoming activity received by hidden unit j: zj =

✓X

k

wjk xk

◆
+ bj

2. Activation of hidden unit j: aj = �(zj) where � is the sigmoid function �(z) =
1

1 + e�z

3. Sum of all incoming activity received by output unit i: zi =

✓X

j

wij aj

◆
+ bi

4. Activation of output unit i: ai = �(zi)

Quadratic cost function

Cost over all n patterns in the dataset {x (p) ! y (p)}, as a function of the weights and biases:

C =
1

n

X

p

X

i

1
2 (yi

(p) � ai
(p))2

In the interest of clarity, we will drop the (p) superscripts from yi(p), ai(p), xk(p), etc. from now
on, and assume that there is just one input pattern in the dataset (n = 1). The generalization to
multiple patterns is straightforward, in which case C will just include more terms in the summation.

1



In general, if F is a function of x, think of @F
@x as meaning “ the influence

x has on F ”. If y depends on x, then x’s influence can act “ through y ”

@F

@x
=

@y

@x
⇥ @F

@y
(chain rule)

Hidden ! Output Weights

We update each weight so as to move in the opposite direction of the cost gradient:

�wij = �⌘
@C

@wij
where the constant ⌘ > 0 is the learning rate

Calculating
@C

@wij
will give us a learning rule for the hidden ! output weights:

@C

@wij
=

@zi
@wij

⇥ @ai
@zi

⇥ @C

@ai

influence of
wij on C

=
influence of
wij on zi

⇥ influence of
zi on ai

⇥ influence of
ai on C

zi =

✓X

j

wij aj

◆
+ bi ai = �(zi) =

1

1 + e�zi

@zi
@wij

=
@

@wij

✓X

j

wij aj

◆
+ bi

�
=

@

@wij


wi1 a1 + wi2 a2 + . . .+ wij aj + . . .+ bi

�
= aj

@ai
@zi

= �0(zi) =
0 · (1 + e�zi)� (�e�zi) · 1

(1 + e�zi)2
=

e�zi

(1 + e�zi)2
using the quotient rule

=
(1 + e�zi)� 1

(1 + e�zi)2
=

1

1 + e�zi
� 1

(1 + e�zi)2
=

1

1 + e�zi

✓
1� 1

1 + e�zi

◆
= ai (1� ai)

C =
X

i

1
2 (yi � ai)

2 = 1
2 (y1 � a1)2 +

1
2 (y2 � a2)2 + . . .+ 1

2 (yi � ai)2 + . . .

@C

@ai
= 2 · 1

2 (yi � ai) · (�1) = ai � yi

2



Therefore

@C

@wij
=

@zi
@wij

@ai
@zi

@C

@ai
= aj · ai (1� ai) · (ai � yi) = (ai � yi) ai (1� ai) aj

For convenience, we define �i = (ai � yi) ai (1� ai) and rewrite the above equation as

@C

@wij
= �i aj

which gives the rule for calculating the weight change for the hidden ! output weight wij :

�wij = �⌘
@C

@wij
= �⌘ �i aj

Update Rule for Hidden!Output Layer:

�i = (ai � yi) ai (1� ai)

�wij = �⌘ �i aj �bi = �⌘ �i

Input ! Hidden Weights

The learning rule for the input ! hidden weights is: �wjk = �⌘
@C

@wjk

@C

@wjk
=

@zj
@wjk

⇥ @aj
@zj

⇥ @C

@aj

influence of
wjk on C

=
influence of
wjk on zj

⇥ influence of
zj on aj

⇥ influence of
aj on C

zj =

✓X

k

wjk xk

◆
+ bj aj = �(zj) =

1

1 + e�zj

@zj
@wjk

=
@

@wjk

✓X

k

wjk xk

◆
+ bj

�
=

@

@wjk


wj1 x1 + wj2 x2 + . . .+ wjk xk + . . .+ bj

�
= xk

@aj
@zj

= �0(zj) = aj (1� aj)

3



What about
@C

@aj
? This is the influence that hidden unit j’s activation has on the total cost.

This activation feeds into all i-units, each of which influences the cost C:

@C

@aj
=

X

i

@zi
@aj

⇥ @ai
@zi

⇥ @C

@ai
=

X

i

influence of
aj on zi

⇥ influence of
zi on ai

⇥ influence of
ai on C

We already calculated
@ai
@zi

and
@C

@ai
earlier:

@ai
@zi

= ai (1� ai)
@C

@ai
= ai � yi

So all that remains is to calculate
@zi
@aj

, using the fact that zi =

✓X

j

wij aj

◆
+ bi

@zi
@aj

=
@

@aj

✓X

j

wij aj

◆
+ bi

�
=

@

@aj


wi1 a1 + wi2 a2 + . . .+ wij aj + . . .+ bi

�
= wij

Therefore

@C

@aj
=

X

i

@zi
@aj

@ai
@zi

@C

@ai
=

X

i

wij · ai (1� ai) · (ai � yi) =
X

i

wij (ai � yi) ai (1� ai)

which, using our earlier definition of �i = (ai � yi) ai (1� ai), we can rewrite as

@C

@aj
=

X

i

wij �i

We now have all of the pieces needed to complete our calculation of
@C

@wjk
, that is, the influence of

the input ! hidden weight wjk on the total cost C:

@C

@wjk
=

@zj
@wjk

⇥ @aj
@zj

⇥ @C

@aj

influence of
wjk on C

= xk ⇥ aj (1� aj) ⇥
X

i

wij �i

4



In summary,

@C

@wjk
= xk aj (1� aj)

✓X

i

wij �i

◆
=

✓X

i

wij �i

◆
aj (1� aj)xk

For convenience, we define �j =

✓X

i

wij �i

◆
aj (1� aj) and rewrite the above equation as

@C

@wjk
= �j xk

which gives the rule for calculating the weight change for the input ! hidden weight wjk:

�wjk = �⌘
@C

@wjk
= �⌘ �j xk

Update Rule for Input!Hidden Layer:

�j =

✓X

i

wij �i

◆
aj (1� aj)

�wjk = �⌘ �j xk �bj = �⌘ �j

Backward pass: given output activations, backpropagate error and update weights

1. Compute delta value for each output unit i: �i = (ai � yi) ai (1� ai)

2. Compute delta value for each hidden unit j: �j =

✓X

i

wij �i

◆
aj (1� aj)

3. Compute weight and bias changes for hidden! output layer: �wij = �⌘ �i aj �bi = �⌘ �i

4. Compute weight and bias changes for input! hidden layer: �wjk = �⌘ �j xk �bj = �⌘ �j

5. Update hidden ! output weights and biases: wij = wij +�wij bi = bi +�bi

6. Update input ! hidden weights and biases: wjk = wjk +�wjk bj = bj +�bj

Momentum

The momentum parameter 0  ↵  1 controls how much the previous weight/bias change at time
t� 1 contributes to the current change at time t (these equations replace steps 3 and 4 above):

�wij(t) = �⌘ �i aj + ↵�wij(t� 1) for the hidden ! output weights

�wjk(t) = �⌘ �j xk + ↵�wjk(t� 1) for the input ! hidden weights

�bi(t) = �⌘ �i + ↵�bi(t� 1) for the output unit biases

�bj(t) = �⌘ �j + ↵�bj(t� 1) for the hidden unit biases

5


