Derivation of the Backpropagation Learning Rule

Notation

Forward pass: given input pattern x, compute output activations

1. Sum of all incoming activity received by hidden unit $j: \quad z_{j}=\left(\sum_{k} w_{j k} x_{k}\right)+b_{j}$
2. Activation of hidden unit $j: \quad a_{j}=\sigma\left(z_{j}\right) \quad$ where σ is the sigmoid function $\sigma(z)=\frac{1}{1+e^{-z}}$
3. Sum of all incoming activity received by output unit i : $\quad z_{i}=\left(\sum_{j} w_{i j} a_{j}\right)+b_{i}$
4. Activation of output unit i : $a_{i}=\sigma\left(z_{i}\right)$

Quadratic cost function

Cost over all n patterns in the dataset $\left\{\boldsymbol{x}^{(p)} \rightarrow \boldsymbol{y}^{(p)}\right\}$, as a function of the weights and biases:

$$
C=\frac{1}{n} \sum_{p} \sum_{i} \frac{1}{2}\left(y_{i}{ }^{(p)}-a_{i}^{(p)}\right)^{2}
$$

In the interest of clarity, we will drop the (p) superscripts from $y_{i}{ }^{(p)}, a_{i}{ }^{(p)}, x_{k}{ }^{(p)}$, etc. from now on, and assume that there is just one input pattern in the dataset $(n=1)$. The generalization to multiple patterns is straightforward, in which case C will just include more terms in the summation.

In general, if F is a function of x, think of $\frac{\partial F}{\partial x}$ as meaning "the influence x has on F ". If y depends on x, then x 's influence can act "through y "

$$
\frac{\partial F}{\partial x}=\frac{\partial y}{\partial x} \times \frac{\partial F}{\partial y}
$$

(chain rule)

Hidden \rightarrow Output Weights

We update each weight so as to move in the opposite direction of the cost gradient:

$$
\Delta w_{i j}=-\eta \frac{\partial C}{\partial w_{i j}} \quad \text { where the constant } \eta>0 \text { is the learning rate }
$$

Calculating $\frac{\partial C}{\partial w_{i j}}$ will give us a learning rule for the hidden \rightarrow output weights:

$$
\frac{\partial C}{\partial w_{i j}}=\frac{\partial z_{i}}{\partial w_{i j}} \times \frac{\partial a_{i}}{\partial z_{i}} \times \frac{\partial C}{\partial a_{i}}
$$

influence of
$w_{i j}$ on C
:---:
$w_{i j}$ on z_{i}
:---:
z_{i} on a_{i}
:---:
a_{i} on C

$$
z_{i}=\left(\sum_{j} w_{i j} a_{j}\right)+b_{i} \quad a_{i}=\sigma\left(z_{i}\right)=\frac{1}{1+e^{-z_{i}}}
$$

$\frac{\partial z_{i}}{\partial w_{i j}}=\frac{\partial}{\partial w_{i j}}\left[\left(\sum_{j} w_{i j} a_{j}\right)+b_{i}\right]=\frac{\partial}{\partial w_{i j}}\left[w_{i 1} a_{1}+w_{i 2} a_{2}+\ldots+w_{i j} a_{j}+\ldots+b_{i}\right]=a_{j}$

$$
\begin{aligned}
\frac{\partial a_{i}}{\partial z_{i}} & =\sigma^{\prime}\left(z_{i}\right)=\frac{0 \cdot\left(1+e^{-z_{i}}\right)-\left(-e^{-z_{i}}\right) \cdot 1}{\left(1+e^{-z_{i}}\right)^{2}}=\frac{e^{-z_{i}}}{\left(1+e^{-z_{i}}\right)^{2}} \quad \text { using the quotient rule } \\
& =\frac{\left(1+e^{-z_{i}}\right)-1}{\left(1+e^{-z_{i}}\right)^{2}}=\frac{1}{1+e^{-z_{i}}}-\frac{1}{\left(1+e^{-z_{i}}\right)^{2}}=\frac{1}{1+e^{-z_{i}}}\left(1-\frac{1}{1+e^{-z_{i}}}\right)=a_{i}\left(1-a_{i}\right)
\end{aligned}
$$

$C=\sum_{i} \frac{1}{2}\left(y_{i}-a_{i}\right)^{2}=\frac{1}{2}\left(y_{1}-a_{1}\right)^{2}+\frac{1}{2}\left(y_{2}-a_{2}\right)^{2}+\ldots+\frac{1}{2}\left(y_{i}-a_{i}\right)^{2}+\ldots$
$\frac{\partial C}{\partial a_{i}}=2 \cdot \frac{1}{2}\left(y_{i}-a_{i}\right) \cdot(-1)=a_{i}-y_{i}$

Therefore

$$
\frac{\partial C}{\partial w_{i j}}=\frac{\partial z_{i}}{\partial w_{i j}} \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial C}{\partial a_{i}}=a_{j} \cdot a_{i}\left(1-a_{i}\right) \cdot\left(a_{i}-y_{i}\right)=\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right) a_{j}
$$

For convenience, we define $\delta_{i}=\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right)$ and rewrite the above equation as

$$
\frac{\partial C}{\partial w_{i j}}=\delta_{i} a_{j}
$$

which gives the rule for calculating the weight change for the hidden \rightarrow output weight $w_{i j}$:

$$
\Delta w_{i j}=-\eta \frac{\partial C}{\partial w_{i j}}=-\eta \delta_{i} a_{j}
$$

```
Update Rule for Hidden \(\rightarrow\) Output Layer:
\(\delta_{i}=\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right)\)
\(\Delta w_{i j}=-\eta \delta_{i} a_{j} \quad \Delta b_{i}=-\eta \delta_{i}\)
```


Input \rightarrow Hidden Weights

The learning rule for the input \rightarrow hidden weights is: $\quad \Delta w_{j k}=-\eta \frac{\partial C}{\partial w_{j k}}$

$$
\frac{\partial C}{\partial w_{j k}}=\frac{\partial z_{j}}{\partial w_{j k}} \times \frac{\partial a_{j}}{\partial z_{j}} \times \frac{\partial C}{\partial a_{j}}
$$

influence of
$w_{j k}$ on C
:---:
$w_{j k}$ on z_{j}
:---:
z_{j} on a_{j}
:---:
a_{j} on C

$\frac{\partial z_{j}}{\partial w_{j k}}=\frac{\partial}{\partial w_{j k}}\left[\left(\sum_{k} w_{j k} x_{k}\right)+b_{j}\right]=\frac{\partial}{\partial w_{j k}}\left[w_{j 1} x_{1}+w_{j 2} x_{2}+\ldots+w_{j k} x_{k}+\ldots+b_{j}\right]=x_{k}$
$\frac{\partial a_{j}}{\partial z_{j}}=\sigma^{\prime}\left(z_{j}\right)=a_{j}\left(1-a_{j}\right)$

What about $\frac{\partial C}{\partial a_{j}}$? This is the influence that hidden unit j 's activation has on the total cost.
This activation feeds into all i-units, each of which influences the cost C :

$\frac{\partial C}{\partial a_{j}}=\sum_{i} \frac{\partial z_{i}}{\partial a_{j}} \times \frac{\partial a_{i}}{\partial z_{i}} \times \frac{\partial C}{\partial a_{i}}=\sum_{i} \begin{gathered}\text { influence of } \\ a_{j} \text { on } z_{i}\end{gathered} \times \begin{gathered}\text { influence of } \\ z_{i} \text { on } a_{i}\end{gathered} \times \begin{gathered}\text { influence of } \\ a_{i} \text { on } C\end{gathered}$
We already calculated $\frac{\partial a_{i}}{\partial z_{i}}$ and $\frac{\partial C}{\partial a_{i}}$ earlier: $\quad \frac{\partial a_{i}}{\partial z_{i}}=a_{i}\left(1-a_{i}\right) \quad \frac{\partial C}{\partial a_{i}}=a_{i}-y_{i}$
So all that remains is to calculate $\frac{\partial z_{i}}{\partial a_{j}}$, using the fact that $z_{i}=\left(\sum_{j} w_{i j} a_{j}\right)+b_{i}$
$\frac{\partial z_{i}}{\partial a_{j}}=\frac{\partial}{\partial a_{j}}\left[\left(\sum_{j} w_{i j} a_{j}\right)+b_{i}\right]=\frac{\partial}{\partial a_{j}}\left[w_{i 1} a_{1}+w_{i 2} a_{2}+\ldots+w_{i j} a_{j}+\ldots+b_{i}\right]=w_{i j}$
Therefore

$$
\frac{\partial C}{\partial a_{j}}=\sum_{i} \frac{\partial z_{i}}{\partial a_{j}} \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial C}{\partial a_{i}}=\sum_{i} w_{i j} \cdot a_{i}\left(1-a_{i}\right) \cdot\left(a_{i}-y_{i}\right)=\sum_{i} w_{i j}\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right)
$$

which, using our earlier definition of $\delta_{i}=\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right)$, we can rewrite as

$$
\frac{\partial C}{\partial a_{j}}=\sum_{i} w_{i j} \delta_{i}
$$

We now have all of the pieces needed to complete our calculation of $\frac{\partial C}{\partial w_{j k}}$, that is, the influence of the input \rightarrow hidden weight $w_{j k}$ on the total cost C :

$$
\frac{\partial C}{\partial w_{j k}}=\frac{\partial z_{j}}{\partial w_{j k}} \times \frac{\partial a_{j}}{\partial z_{j}} \times \frac{\partial C}{\partial a_{j}}
$$

$$
\begin{array}{|c}
\hline \text { influence of } \\
w_{j k} \text { on } C
\end{array}=x_{k} \times a_{j}\left(1-a_{j}\right) \times \sum_{i} w_{i j} \delta_{i}
$$

In summary,

$$
\frac{\partial C}{\partial w_{j k}}=x_{k} a_{j}\left(1-a_{j}\right)\left(\sum_{i} w_{i j} \delta_{i}\right)=\left(\sum_{i} w_{i j} \delta_{i}\right) a_{j}\left(1-a_{j}\right) x_{k}
$$

For convenience, we define $\delta_{j}=\left(\sum_{i} w_{i j} \delta_{i}\right) a_{j}\left(1-a_{j}\right)$ and rewrite the above equation as $\frac{\partial C}{\partial w_{j k}}=\delta_{j} x_{k}$
which gives the rule for calculating the weight change for the input \rightarrow hidden weight $w_{j k}$:

$$
\Delta w_{j k}=-\eta \frac{\partial C}{\partial w_{j k}}=-\eta \delta_{j} x_{k}
$$

Update Rule for Input \rightarrow Hidden Layer:

$$
\begin{aligned}
& \delta_{j}=\left(\sum_{i} w_{i j} \delta_{i}\right) a_{j}\left(1-a_{j}\right) \\
& \Delta w_{j k}=-\eta \delta_{j} x_{k} \quad \Delta b_{j}=-\eta \delta_{j}
\end{aligned}
$$

Backward pass: given output activations, backpropagate error and update weights

1. Compute delta value for each output unit i : $\quad \delta_{i}=\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right)$
2. Compute delta value for each hidden unit j : $\quad \delta_{j}=\left(\sum_{i} w_{i j} \delta_{i}\right) a_{j}\left(1-a_{j}\right)$
3. Compute weight and bias changes for hidden \rightarrow output layer: $\Delta w_{i j}=-\eta \delta_{i} a_{j} \quad \Delta b_{i}=-\eta \delta_{i}$
4. Compute weight and bias changes for input \rightarrow hidden layer: $\Delta w_{j k}=-\eta \delta_{j} x_{k} \quad \Delta b_{j}=-\eta \delta_{j}$
5. Update hidden \rightarrow output weights and biases: $\quad w_{i j}=w_{i j}+\Delta w_{i j} \quad b_{i}=b_{i}+\Delta b_{i}$
6. Update input \rightarrow hidden weights and biases: $\quad w_{j k}=w_{j k}+\Delta w_{j k} \quad b_{j}=b_{j}+\Delta b_{j}$

Momentum

The momentum parameter $0 \leq \alpha \leq 1$ controls how much the previous weight/bias change at time $t-1$ contributes to the current change at time t (these equations replace steps 3 and 4 above):

$$
\begin{array}{ll}
\Delta w_{i j}(t)=-\eta \delta_{i} a_{j}+\alpha \Delta w_{i j}(t-1) & \text { for the hidden } \rightarrow \text { output weights } \\
\Delta w_{j k}(t)=-\eta \delta_{j} x_{k}+\alpha \Delta w_{j k}(t-1) & \text { for the input } \rightarrow \text { hidden weights } \\
\Delta b_{i}(t)=-\eta \delta_{i}+\alpha \Delta b_{i}(t-1) & \text { for the output unit biases } \\
\Delta b_{j}(t)=-\eta \delta_{j}+\alpha \Delta b_{j}(t-1) & \text { for the hidden unit biases }
\end{array}
$$

