
Genetic Algorithmschapter 9

After he answered the question “Can a machine reproduce
itself?” in the affirmative, von Neumann wanted to take the next logical

step and have computers (or computer programs) reproduce themselves with
mutations and compete for resources to survive in some environment. This
would counter the “survival instinct” and “evolution and adaptation” argu-
ments mentioned above. However, von Neumann died before he was able to
work on the evolution problem.

Others quickly took up where he left off. By the early 1960s, several groups
of researchers were experimenting with evolution in computers. Such work
has come to be known collectively as evolutionary computation. The most widely
known of these efforts today is the work on genetic algorithms done by John
Holland and his students and colleagues at the University of Michigan.

John Holland is, in some sense, the academic grandchild of John von
Neumann. Holland’s own Ph.D. advisor was Arthur Burks, the philoso-
pher, logician, and computer engineer who assisted von Neumann on the
EDVAC computer and who completed von Neumann’s unfinished work on
self-reproducing automata. After his work on the EDVAC, Burks obtained
a faculty position in philosophy at the University of Michigan and started
the Logic of Computers group, a loose-knit collection of faculty and students
who were interested in the foundations of computers and of information pro-
cessing in general. Holland joined the University of Michigan as a Ph.D.
student, starting in mathematics and later switching to a brand-new pro-
gram called “communication sciences” (later “computer and communication
sciences”), which was arguably the first real computer science department
in the world. A few years later, Holland became the program’s first Ph.D.

Complexity: A Guided Tour

, by Melanie Mitchell, Oxford University Press, 2009

From



John Holland. (Photograph
copyright © by the Santa Fe

Institute. Reprinted by permission.)

recipient, giving him the distinction of having received the world’s first
Ph.D. in computer science. He was quickly hired as a professor in that same
department.

Holland got hooked on Darwinian evolution when he read Ronald Fisher’s
famous book, The Genetical Theory of Natural Selection. Like Fisher (and
Darwin), Holland was struck by analogies between evolution and animal
breeding. But he looked at the analogy from his own computer science per-
spective: “That’s where genetic algorithms came from. I began to wonder if
you could breed programs the way people would say, breed good horses and
breed good corn.”

Holland’s major interest was in the phenomenon of adaptation—how liv-
ing systems evolve or otherwise change in response to other organisms or
to a changing environment, and how computer systems might use similar
principles to be adaptive as well. His 1975 book, Adaptation in Natural and
Artificial Systems, laid out a set of general principles for adaptation, including
a proposal for genetic algorithms.

My own first exposure to genetic algorithms was in graduate school at
Michigan, when I took a class taught by Holland that was based on his book.
I was instantly enthralled by the idea of “evolving” computer programs. (Like
Thomas Huxley, my reaction was, “How extremely stupid not to have thought
of that!”)

128 life and evolution in computers



A Recipe for a Genetic Algorithm

The term algorithm is used these days to mean what Turing meant by definite
procedure and what cooks mean by recipe: a series of steps by which an input is
transformed to an output.

In a genetic algorithm (GA), the desired output is a solution to some prob-
lem. Say, for example, that you are assigned to write a computer program
that controls a robot janitor that picks up trash around your office building.
You decide that this assignment will take up too much of your time, so you
want to employ a genetic algorithm to evolve the program for you. Thus, the
desired output from the GA is a robot-janitor control program that allows
the robot to do a good job of collecting trash.

The input to the GA has two parts: a population of candidate programs,
and a fitness function that takes a candidate program and assigns to it a
fitness value that measures how well that program works on the desired
task.

Candidate programs can be represented as strings of bits, numbers, or
symbols. Later in this chapter I give an example of representing a robot-
control program as a string of numbers.

In the case of the robot janitor, the fitness of a candidate program could
be defined as the square footage of the building that is covered by the robot,
when controlled by that program, in a set amount of time. The more the
better.

Here is the recipe for the GA.
Repeat the following steps for some number of generations:

1. Generate an initial population of candidate solutions. The simplest way
to create the initial population is just to generate a bunch of random
programs (strings), called “individuals.”

2. Calculate the fitness of each individual in the current population.
3. Select some number of the individuals with highest fitness to be the

parents of the next generation.
4. Pair up the selected parents. Each pair produces offspring by

recombining parts of the parents, with some chance of random
mutations, and the offspring enter the new population. The selected
parents continue creating offspring until the new population is full (i.e.,
has the same number of individuals as the initial population). The new
population now becomes the current population.

5. Go to step 2.

genetic algorithms 129



Genetic Algorithms in the Real World

The GA described above is simple indeed, but versions of it have been used
to solve hard problems in many scientific and engineering areas, as well as in
art, architecture, and music.

Just to give you a flavor of these problems: GAs have been used at the
General Electric Company for automating parts of aircraft design, Los Alamos
National Lab for analyzing satellite images, the John Deere company for
automating assembly line scheduling, and Texas Instruments for computer
chip design. GAs were used for generating realistic computer-animated horses
in the 2003 movie The Lord of the Rings: The Return of the King, and realistic
computer-animated stunt doubles for actors in the movie Troy. A number of
pharmaceutical companies are using GAs to aid in the discovery of new drugs.
GAs have been used by several financial organizations for various tasks: detect-
ing fraudulent trades (London Stock Exchange), analysis of credit card data
(Capital One), and forecasting financial markets and portfolio optimization
(First Quadrant). In the 1990s, collections of artwork created by an interactive
genetic algorithm were exhibited at several museums, including the Georges
Pompidou Center in Paris. These examples are just a small sampling of ways
in which GAs are being used.

Evolving Robby, the Soda-Can-Collecting Robot

To introduce you in more detail to the main ideas of GAs, I take you through
a simple extended example. I have a robot named “Robby” who lives in a
(computer simulated, but messy) two-dimensional world that is strewn with
empty soda cans. I am going to use a genetic algorithm to evolve a “brain”
(that is, a control strategy) for Robby.

Robby’s job is to clean up his world by collecting the empty soda cans.
Robby’s world, illustrated in figure 9.1, consists of 100 squares (sites) laid out
in a 10 × 10 grid. You can see Robby in site 0,0. Let’s imagine that there is a
wall around the boundary of the entire grid. Various sites have been littered
with soda cans (but with no more than one can per site).

Robby isn’t very intelligent, and his eyesight isn’t that great. From wher-
ever he is, he can see the contents of one adjacent site in the north, south,
east, and west directions, as well as the contents of the site he occupies. A site
can be empty, contain a can, or be a wall. For example, in figure 9.1, Robby,
at site 0,0, sees that his current site is empty (i.e., contains no soda cans), the
“sites” to the north and west are walls, the site to the south is empty, and the
site to the east contains a can.

130 life and evolution in computers



figure 9.1. Robby’s world. A 10 x 10 array, strewn
with soda cans.

For each cleaning session, Robby can perform exactly 200 actions. Each
action consists of one of the following seven choices: move to the north, move
to the south, move to the east, move to the west, choose a random direction to
move in, stay put, or bend down to pick up a can. Each action may generate
a reward or a punishment. If Robby is in the same site as a can and picks it
up, he gets a reward of ten points. However, if he bends down to pick up a
can in a site where there is no can, he is fined one point. If he crashes into a
wall, he is fined five points and bounces back into the current site.

Clearly, Robby’s reward is maximized when he picks up as many cans as
possible, without crashing into any walls or bending down to pick up a can
if no can is there.

Since this is a simple problem, it would probably be pretty easy for a
human to figure out a good strategy for Robby to follow. However, the point
of genetic algorithms is that humans, being intrinsically lazy, don’t have to
figure out anything; we just let computer evolution figure it out for us. Let’s
use a genetic algorithm to evolve a good strategy for Robby.

The first step is to figure out exactly what we are evolving; that is, what
exactly constitutes a strategy? In general, a strategy is a set of rules that gives,
for any situation, the action you should take in that situation. For Robby, a
“situation” is simply what he can see: the contents of his current site plus the
contents of the north, south, east, and west sites. For the question “what to

genetic algorithms 131



do in each situation,” Robby has seven possible things he can do: move north,
south, east, or west; move in a random direction; stay put; or pick up a can.

Therefore, a strategy for Robby can be written simply as a list of all the
possible situations he could encounter, and for each possible situation, which
of the seven possible actions he should perform.

How many possible situations are there? Robby looks at five different sites
(current, north, south, east, west), and each of those sites can be labeled as
empty, contains can, or wall. This means that there are 243 different possible
situations (see the notes for an explanation of how I calculated this). Actu-
ally, there aren’t really that many, since Robby will never face a situation in
which his current site is a wall, or one in which north, south, east, and west
are all walls. There are other “impossible” situations as well. Again, being
lazy, we don’t want to figure out what all the impossible situations are, so
we’ll just list all 243 situations, and know that some of them will never be
encountered.

Table 9.1 is an example of a strategy—actually, only part of a strategy,
since an entire strategy would be too long to list here.

Robby’s situation in figure 9.1 is

North South East West Current Site
Wall Empty Can Wall Empty

To decide what to do next, Robby simply looks up this situation in his strategy
table, and finds that the corresponding action is MoveWest. So he moves
west. And crashes into a wall.

I never said this was a good strategy. Finding a good strategy isn’t our job;
it’s the job of the genetic algorithm.

table 9-1

Situation Action

North South East West Current Site

Empty Empty Empty Empty Empty MoveNorth
Empty Empty Empty Empty Can MoveEast
Empty Empty Empty Empty Wall MoveRandom
Empty Empty Empty Can Empty PickUpCan

...
...

...
...

...
...

Wall Empty Can Wall Empty MoveWest
...

...
...

...
...

...
Wall Wall Wall Wall Wall StayPut

132 life and evolution in computers



I wrote the code for a genetic algorithm to evolve strategies for Robby.
In my GA, each individual in the population is a strategy—a listing of the
actions that correspond to each possible situation. That is, given a strategy
such as the one in table 9.1, an individual to be evolved by the GA is just a
listing of the 243 actions in the rightmost column, in the order given:

MoveNorth MoveEast MoveRandom PickUpCan … MoveWest … StayPut

The GA remembers that the first action in the string (here MoveNorth)
goes with the first situation (“Empty Empty Empty Empty Empty”), the
second action (here MoveEast) goes with the second situation (“Empty Empty
Empty Empty Can”), and so on. In other words, I don’t have to explicitly list
the situations corresponding to these actions; instead the GA remembers the
order in which they are listed. For example, suppose Robby happened to
observe that he was in the following situation:

North South East West Current Site
Empty Empty Empty Empty Can

I build into the GA the knowledge that this is situation number 2. It would
look at the strategy table and see that the action in position 2 is MoveEast.
Robby moves east, and then observes his next situation; the GA again looks
up the corresponding action in the table, and so forth.

My GA is written in the programming language C. I won’t include the
actual program here, but this is how it works.

1. Generate the initial population. The GA starts with an initial
population of 200 random individuals (strategies).

A random population is illustrated in figure 9.2. Each individual
strategy is a list of 243 “genes.” Each gene is a number between 0 and 6,
which stands for an action (0 = MoveNorth, 1 = MoveSouth, 2 =
MoveEast, 3 = MoveWest, 4 = StayPut, 5 = PickUp, and 6 =
RandomMove). In the initial population, these numbers are filled in at
random. For this (and all other probabilistic or random choices), the GA
uses a pseudo-random-number generator.
Repeat the following for 1,000 generations:

2. Calculate the fitness of each individual in the population. In my
program, the fitness of a strategy is determined by seeing how well the
strategy lets Robby do on 100 different cleaning sessions. A cleaning
session consists of putting Robby at site 0, 0, and throwing down a
bunch of cans at random (each site can contain at most one can; the

genetic algorithms 133



figure 9.2. Random initial population. Each individual consists of 243
numbers, each of which is between 0 and 6, and each of which encodes an
action. The location of a number in a string indicates to which situation the
action corresponds.

probability of a given site containing a can is 50%). Robby then follows
the strategy for 200 actions in each session. The score of the strategy in
each session is the number of reward points Robby accumulates minus
the total fines he incurs. The strategy’s fitness is its average score over
100 different cleaning sessions, each of which has a different
configuration of cans.

3. Apply evolution to the current population of strategies to create a new
population. That is, repeat the following until the new population has
200 individuals:

(a) Choose two parent individuals from the current population
probabilistically based on fitness. That is, the higher a strategy’s
fitness, the more chance it has to be chosen as a parent.

134 life and evolution in computers



(b) Mate the two parents to create two children. That is, randomly
choose a position at which to split the two number strings; form one
child by taking the numbers before that position from parent A and
after that position from parent B, and vice versa to form the second
child.

(c) With a small probability, mutate numbers in each child. That is,
with a small probability, choose one or more numbers and replace
them each with a randomly generated number between 0 and 6.

(d) Put the two children in the new population.

4. Once the new population has 200 individuals, return to step 2 with this
new generation.

The magic is that, starting from a set of 200 random strategies, the genetic
algorithm creates strategies that allow Robby to perform very well on his
cleaning task.

The numbers I used for the population size (200), the number of genera-
tions (1,000), the number of actions Robby can take in a session (200), and
the number of cleaning sessions to calculate fitness (100) were chosen by me,
somewhat arbitrarily. Other numbers can be used and can also produce good
strategies.

I’m sure you are now on the edge of your seat waiting to find out what
happened when I ran this genetic algorithm. But first, I have to admit that
before I ran it, I overcame my laziness and constructed my own “smart”
strategy, so I could see how well the GA could do compared with me. My
strategy for Robby is: “If there is a can in the current site, pick it up. Otherwise,
if there is a can in one of the adjacent sites, move to that site. (If there are
multiple adjacent sites with cans, I just specify the one to which Robby
moves.) Otherwise, choose a random direction to move in.”

This strategy actually isn’t as smart as it could be; in fact, it can make
Robby get stuck cycling around empty sites and never making it to some of
the sites with cans.

I tested my strategy on 10,000 cleaning sessions, and found that its average
(per-session) score was approximately 346. Given that at the beginning of each
session, about 50%, or 50, of the sites contain cans, the maximum possible
score for any strategy is approximately 500, so my strategy is not very close
to optimal.

Can the GA do as well or better than this? I ran it to see. I took the highest-
fitness individual in the final generation, and also tested it on 10,000 new and
different cleaning sessions. Its average (per-session) score was approximately
483—that is, nearly optimal!

genetic algorithms 135



How Does the GA-Evolved Strategy Solve the Problem?

Now the question is, what is this strategy doing, and why does it do better
than my strategy? Also, how did the GA evolve it?

Let’s call my strategy M and the GA’s strategy G. Below is each strategy’s
genome.

M: 65635365625235325265635365615135315125235325215135315165635365

62523532526563536560503530502523532520503530501513531512523532

5215135315105035305025235325205035305065635356252353252656353

656151353151252353252151353151656353656252353252656353454

G: 25435515325623525105635546115133615415103415611055015005203025

62561322523503251120523330540552312550513361541506652641502665

06012264453605631520256431054354632404350334153250253251352352

045150130156213436252353223135051260513356201524514343432

Staring at the genome of a strategy doesn’t help us too much in under-
standing how that strategy works. We can see a few genes that make sense,
such as the important situations in which Robby’s current site contains a can,
such as the second situation (“Empty Empty Empty Empty Can”), which has
action 5 (PickUp) in both strategies. Such situations always have action 5 in
M, but only most of the time in G. For example, I managed to determine that
the following situation

North South East West Current Site
Empty Can Empty Can Can

has action 3 (MoveWest), which means Robby doesn’t pick up the can in his
current site. This seems like a bad idea, yet G does better than M overall!
The key, it turns out, is not these isolated genes, but the way different genes
interact, just as has been found in real genetics. And just as in real genetics, it’s
very difficult to figure out how these various interactions lead to the overall
behavior or fitness.

It makes more sense to look at the actual behavior of each strategy—its
phenotype—rather than its genome. I wrote a graphics program to display
Robby’s moves when using a given strategy, and spent some time watching
the behavior of Robby when he used strategy M and when he used strat-
egy G. Although the two strategies behave similarly in many situations, I
found that strategy G employs two tricks that cause it to perform better than
strategy M.

First, consider a situation in which Robby does not sense a can in his
current site or in any of his neighboring sites. If Robby is following strategy

136 life and evolution in computers



figure 9.3. Robby in a "no-can" wilderness. The dotted lines show
the paths he took in my simulation when he was following strategies
M (top) and G (bottom).

M, he chooses a random move to make. However, if he is following strategy
G, Robby moves to the east until he either finds a can or reaches a wall. He
then moves north, and continues to circle the edge of the grid in a counter-
clockwise direction until a can is encountered or sensed. This is illustrated in
figure 9.3 by the path Robby takes under each strategy (dotted line).

genetic algorithms 137



figure 9.4. Robby in a cluster of cans, using strategy M over four time steps.

Not only does this circle-the-perimeter strategy prevent Robby from crash-
ing into walls (a possibility under M whenever a random move is made), but it
also turns out that circling the perimeter is a more efficient way to encounter
cans than simply moving at random.

Second, with G the genetic algorithm discovered a neat trick by having
Robby not pick up a can in his current site in certain situations.

For example, consider the situation illustrated in figure 9.4a. Given this
situation, if Robby is following M, he will pick up the can in his current
site, move west, and then pick up the can in his new site (pictures b–d).
Because Robby can see only immediately adjacent sites, he now cannot see
the remaining cluster of cans. He will have to move around at random until
he encounters another can by chance.

In contrast, consider the same starting situation with G, illustrated in
figure 9.5a. Robby doesn’t pick up the can in his current site; instead he
moves west (figure 9.5b). He then picks up the western-most can of the cluster
(figure 9.5c). The can he didn’t pick up on the last move acts as a marker so
Robby can “remember” that there are cans on the other side of it. He goes on
to pick up all of the remaining cans in the cluster (figure 9.5d–9.5k).

138 life and evolution in computers



figure 9.5. Robby in the same cluster of cans, using strategy G over eleven
time steps. (Continued on next page)

genetic algorithms 139



figure 9.5. (Continued )

I knew that my strategy wasn’t perfect, but this little trick never occurred
to me. Evolution can be pretty clever. GAs often come up with things we
humans don’t consider.

Geneticists often test their theories about gene function by doing “knock-
out mutations,” in which they use genetic engineering techniques to prevent
the genes in question from being transcribed and see what effect that has on
the organism. I can do the same thing here. In particular, I did an experiment
in which I “knocked out” the genes in G that made this trick possible: I
changed genes such that each gene that corresponds to a “can in current site”
situation has the action PickUp. This lowered the average score of G from its
original 483 to 443, which supports my hypothesis that this trick is partly
responsible for G’s success.

How Did the GA Evolve a Good Strategy?

The next question is, how did the GA, starting with a random population,
manage to evolve such a good strategy as G?

To answer this question, let’s look at how strategies improved over gener-
ations. In figure 9.6, I plot the fitness of the best strategy in each generation

140 life and evolution in computers



0 200

500

400

 300

200

100

–100

0

400 600 800 1000

Generation

B
e
s
t 
fi
tn

e
s
s
 i
n
 p

o
p
u
la

ti
o
n

figure 9.6. Plot of best fitness in the population versus generation
for the run of the GA in which strategy G was evolved.

in my run of the GA. You can see that the best fitness starts out way below
zero, rises very quickly until about generation 300, and then improves more
slowly for the rest of the run.

The first generation consists of 200 randomly generated strategies. As you
might expect, all of them are very, very bad. The best one has fitness of only
−81 and the worst one has fitness −825.

I looked at the behavior of Robby when using the worst strategy of this
generation, on several sessions, each starting with a different environment
(configuration of cans). In some environments, Robby makes a few moves, then
gets stuck, executing action StayPut again and again, for the entire session. In
others he spends the session crashing into a wall over and over again. In others
he spends his whole time trying to pick up a nonexistent can in his current
site. No surprise that evolution weeded out this strategy quite early on.

I also looked at the behavior of Robby using the best strategy of this
generation, which is still a pretty bad one that gets stuck in ways similar to
those in the worst strategy. However, it has a couple of advantages over the
worst one: it is less likely to continually crash into a wall, and it occasionally
moves into a site with a can and actually picks up the can! This being the
best strategy of its generation, it has an excellent chance of being selected to
reproduce. When it indeed is selected, its children inherit these good traits
(along with lots of bad traits).

genetic algorithms 141



By the tenth generation, the fitness of the best strategy in the population
has risen all the way to zero. This strategy usually gets stuck in a StayPut
loop, occasionally getting stuck in a cycle moving back and forth between
two sites. Very occasionally it crashes into walls. And like its ancestor from
the first generation, it very occasionally picks up cans.

The GA continues its gradual improvement in best fitness. By generation
200 the best strategy has discovered the all-important trait of moving to
sites with cans and then picking up those cans—at least a lot of the time.
However, when stranded in a no-can wilderness, it wastes a lot of time by
making random moves, similar to strategy M. By generation 250 a strategy
equal in quality to M has been found, and by generation 400, the fitness is
up beyond the 400 level, with a strategy that would be as good as G if only it
made fewer random moves. By generation 800 the GA has discovered the trick
of leaving cans as markers for adjacent cans, and by generation 900 the trick
of finding and then moving around the perimeter of the world has been nearly
perfected, requiring only a few tweaks to get it right by generation 1,000.

Although Robby the robot is a relatively simple example for teaching
people about GAs, it is not all that different from the way GAs are used in
the real world. And as in the example of Robby, in real-world applications,
the GA will often evolve a solution that works, but it’s hard to see why it
works. That is often because GAs find good solutions that are quite different
from the ones humans would come up with. Jason Lohn, a genetic algorithms
expert from the National Astronautical and Space Administration (NASA),
emphasizes this point: “Evolutionary algorithms are a great tool for exploring
the dark corners of design space. You show [your designs] to people with 25
years’ experience in the industry and they say ‘Wow, does that really work?’….
We frequently see evolved designs that are completely unintelligible.”

In Lohn’s case, unintelligible as it might be, it does indeed work. In 2005
Lohn and his colleagues won a “Human Competitive” award for their GA’s
design of a novel antenna for NASA spacecraft, reflecting the fact that the
GA’s design was an improvement over that of human engineers.

142 life and evolution in computers


