
Metacat: A Self-Watching Cognitive Architecture
for Analogy-Making

James B. Marshall (marshall@cs.pomona.edu)
Computer Science Program

Pomona College
610 N. College Ave.

Claremont, CA 91711 USA

Abstract

This paper describes Metacat, an extension of the
Copycat analogy-making program. Metacat is able
to monitor its own processing, allowing it to recog-
nize, remember, and recall patterns that occur in
its “train of thought” as it makes analogies. This
gives the program a high degree of flexibility and
self-control. The architecture of the program is de-
scribed, along with a sample run illustrating the
program’s behavior.

Introduction
This paper describes Metacat, an extension of the
Copycat analogy-making program originally devel-
oped by Hofstadter and Mitchell (Hofstadter, 1984;
Mitchell, 1993). Copycat was developed as a model
of the complex interplay between bottom-up and
top-down perceptual processes in the mind, which
together enable humans to perceive analogies be-
tween different situations in remarkably flexible
ways. The program operates in an idealized mi-
croworld of analogy problems involving short strings
of letters. Although the program understands only a
limited set of concepts pertaining to its letter-string
world, its “fluid” processing mechanisms give it con-
siderable flexibility in recognizing and applying these
concepts in many diverse situations.
The long-term goal of the Copycat line of research

is to computationally model how high-level cognitive
phenomena such as creativity, analogical perception,
understanding, and self-awareness can arise out of a
subcognitive substrate composed of a huge number
of tiny, nondeterministic processes, each of which is
far too small by itself to support such phenomena.
Few people would suggest that individual neurons in
the brain (or individual molecules) are “conscious”
in anything like the normal sense in which humans
experience consciousness. One is forced to accept
the fact that self-awareness arises, somehow, out of
nothing but billions of molecular chemical reactions
and neuronal firings. How can individually meaning-
less physical events in a brain—even a huge number
of them—ultimately give rise to meaningful aware-
ness? Hofstadter has argued that two key ideas are
of paramount importance (Hofstadter and FARG,
1995):

What seems to make brains conscious is the
special way they are organized—in particular,
the higher-level structures and mechanisms that
come into being. I see two dimensions as being
critical: (1) the fact that brains possess con-
cepts, allowing complex representational struc-
tures to be built that automatically come with
associative links to all sorts of prior experiences,
and (2) the fact that brains can self-monitor,
allowing a complex internal self-model to arise,
allowing the system an enormous degree of self-
control and open-endedness.

Work on Copycat explored the first idea through
the development of a computer model of analogy-
making in which the program’s representation of
concepts is intimately intertwined with its mecha-
nisms for perceiving similarity between different ide-
alized situations. Recent work has focused on the
second idea by incorporating self-watching into the
model—namely, the ability of a system to perceive
and to explicitly characterize its own perceptual pro-
cesses. The objective of this work has been to de-
velop mechanisms that allow the program to monitor
its own actions and to make explicit the ideas that
come into play during the course of solving analogy
problems. This can be thought of as adding a higher
“cognitive” layer on top of the program’s “subcog-
nitive” layer, enabling the program to watch and
remember what happens at its subcognitive level as
perceptual structures are built, reconfigured, and de-
stroyed. Humans are capable of paying attention to
patterns in their own thinking in a similar fashion
(see, for example, Chi et al., 1994).

Self-watching in Copycat and Metacat
The Copycat architecture has been discussed at
length elsewhere (Mitchell, 1993; Hofstadter and
FARG, 1995), so details will be omitted here.
Briefly, the program consists of a long-term mem-
ory of concepts about the letter-string world, called
the Slipnet, together with a short-term memory for
perceptual structures, called the Workspace. In
the Workspace, small nondeterministic agents called
codelets examine the letters of an analogy problem
(“abc⇒abd; mrrjjj⇒?”, for example), and build



up structures around the letters representing a par-
ticular interpretation of the problem. The program’s
high-level behavior emerges in a bottom-up manner
from the collective actions of many codelets work-
ing in parallel, in much the same way that an ant
colony’s high-level behavior emerges from the indi-
vidual behaviors of the underlying ants, without any
central executive directing the course of events.
Guiding the search for a mutually-consistent set

of structures are concepts in the Slipnet, which be-
come activated to different degrees depending on
the activity in the Workspace. This activation may
spread to neighboring concepts, and strongly influ-
ences codelet decisions, resulting in top-down pres-
sure that guides the program in its search for a good
interpretation of a problem.
The overall degree of Workspace organization is

measured by a number called the temperature. Tem-
perature not only reflects the state of the Workspace,
it also continuously regulates the amount of random-
ness used by codelets in making decisions. At high
temperatures, few Workspace structures exist, so de-
cisions are made in a highly random manner, since
not much is yet known about the problem. How-
ever, as relationships among the letters are noticed
and structures are built, the temperature falls, and
Copycat begins to gain “confidence” in its under-
standing of the situation. At lower temperatures, de-
cisions are still probabilistic, but are much less ran-
dom, being strongly biased by the estimated promise
of newly emerging structures, all of which compete
for attention by codelets. At very low temperatures,
codelets pay attention to only the most promising
structures, and decisions become largely determinis-
tic. Thus the type of strategy used by the program
to explore its search space ranges along a broad con-
tinuum, from being very diffuse and highly parallel
at high temperatures to being very serial and focused
at low temperatures.
To summarize, Copycat’s search proceeds via a

large number of fine-grained stochastic decisions,
which depend on the temperature. These decisions
may cause new structures to be built or existing
structures to be destroyed, which changes the tem-
perature and subsequently alters the course of struc-
ture building, forming a kind of feedback loop. Tem-
perature thus serves as a very crude mechanism for
self-watching in Copycat, since it allows the program
to regulate its own behavior to a limited extent.
That is, by tying the stochastic activity of codelets
to the temperature, the program becomes sensitive
to the consequences of its own actions, since the tem-
perature reflects the result of these actions, albeit in
a very coarse way (i.e., in the form of a single num-
ber).
This type of rudimentary self-watching, however,

is quite primitive. Copycat can characterize patterns
within its perceptual input (the letter strings), but
is completely oblivious to patterns that arise in its

processing of that input. For example, when solving
the problem “abc⇒ abd; xyz⇒ ?”, Copycat usu-
ally attempts to take the successor of z, which is
impossible in the program’s microworld. It “hits a
snag”, and is forced to try something else. However,
it often just tries the same thing again, over and
over, sometimes as many as thirty or forty times be-
fore stumbling by chance on an alternative approach
(such as the answer xyd). Unlike humans, the pro-
gram is unable to recognize when it has fallen into
a repetitive pattern of behavior. It has no memory
of its actions over time, and thus cannot recognize
when it has encountered the same situation in the
past. As a result, Copycat lacks insight into how it
arrives at its answers, and consequently cannot ex-
plain what makes one answer better or worse than
another.
In contrast, Metacat is able to create much

richer representations of the analogies it makes, en-
abling it to compare and contrast answers in an in-
sightful way. This has involved incorporating an
episodic memory into the original Copycat architec-
ture, along with new mechanisms that allow the pro-
gram to monitor itself, so that it can recognize, re-
member, and recall patterns that occur in its “train
of thought” as it makes analogies.
To do this, Metacat creates an explicit sequen-

tial record of the most important processing events
that occur during a run. This temporal record is ex-
amined by codelets for patterns—in the same way
that Copycat’s codelets examine letter-strings for
patterns—and serves as the basis for constructing
an abstract description of an answer in terms of the
key concepts and events that led to its discovery.
Furthermore, by monitoring its own processing in
this way, Metacat can recognize when it has become
“stuck in a rut”, enabling the program to break out
of the rut by focusing on ideas other than the ones
that seem to be leading it nowhere.

The Architecture of Metacat
Metacat’s architecture includes all of Copycat’s ar-
chitectural components, such as the Workspace and
the Slipnet, as well as three new components: the
Episodic Memory, the Themespace, and the Tempo-
ral Trace. When the program discovers a new an-
swer, it pauses to display the answer along with the
Workspace structures that gave rise to it. These
structures represent a way of interpreting the prob-
lem that yields the answer just found. All of this
information is then packaged together into an an-
swer description and stored in the Episodic Mem-
ory, after which the program continues searching for
alternative answers to the problem, instead of sim-
ply quitting. Gradually, over time, a series of answer
descriptions accumulates in memory, each one con-
taining much more information than just the answer
string itself.
The most important structures stored in answer



descriptions are called themes, which represent the
essential ideas underlying an answer. The collec-
tion of themes associated with an answer serves as
the basis for comparing it to other answers stored in
memory. Furthermore, Metacat may be reminded
of other answers it has encountered in the past if
the themes associated with a newly discovered an-
swer, acting as a memory retrieval cue, are similar
enough to those of a previously stored answer de-
scription. Thus an answer’s themes act as an index
under which it is stored and retrieved from memory.
Themes get created in Metacat’s Themespace

as codelets build structures around the letter-
strings, and are composed of Slipnet concepts. For
example, in the problem “abc⇒abd; xyz⇒?”,
an Alphabetic-Position: opposite theme representing
the idea of alphabetic-position symmetry between
the letters a and z might get built if the program
perceives these letters as playing analogous roles in
their respective strings (an interpretation that may
lead to the “mirror image” answer wyz ).
In some ways, themes are like ordinary Workspace

structures. They are not initially present in the
Themespace; rather, they arise during the course of
a run as the result of codelet activity occurring in the
Workspace. In other ways, however, themes behave
like Slipnet concepts. They can take on different lev-
els of activation, reflecting the extent to which the
ideas they represent are supported by structures in
the Workspace. A theme’s activation level decays
over time, and is influenced by the activation lev-
els of other themes. Like Slipnet concepts, themes
can, under certain conditions, exert strong top-down
pressure on perceptual activity in the Workspace. In
fact, themes can assume both positive and negative
levels of activation, ranging from −100 to +100. A
positively-activated theme exerts “positive thematic
pressure”, encouraging the creation of Workspace
structures that support the idea represented by the
theme. A negatively-activated theme, on the other
hand, exerts “negative thematic pressure”, which
discourages the creation of structures related to the
theme, promoting instead the creation of alternative
structures.
The Temporal Trace serves as the focal point for

self-watching in Metacat. Like the Themespace, the
Trace accumulates information over the course of a
single run, and can be viewed as an extension of the
Workspace. The Trace stores an explicit temporal
record of the most important processing events that
occur while the program works on an analogy prob-
lem. Examples of such events include recognizing
some key idea pertaining to the problem (by notic-
ing the strong activation of a theme or concept, for
instance), hitting a snag, or discovering a new an-
swer. Once processing events have been explicitly
represented in the Trace as “reified” structures in
their own right, they are subject to examination by
codelets as well. Metacat thus uses a single set of

mechanisms for perceiving patterns in its perceptual
input and in its own processing of that input. When
a new answer is found, an answer description can
be formed by examining the temporal record in the
Trace to see which events contributed to the answer’s
discovery.
This approach is similar in flavor to work on

derivational analogy, in which the trace of a
problem-solving session is stored in memory for fu-
ture reference, together with a series of annotations
describing the conditions under which each step in
the solution was taken (Carbonell, 1986; Veloso,
1993). In Metacat’s case, however, the information
in the Trace is used as the basis for constructing
an abstract description of the answer found, rather
than being permanently stored itself.
One way to appreciate the abstract, chunked na-

ture of the information in the Trace is to consider the
number of “steps” that occur during a typical run of
Metacat. At a very fine-grained level of description,
where each step corresponds to an action performed
by a single codelet, a run consists of many hundreds
or thousands of steps. At this level of description, no
two runs are ever exactly the same, even if they in-
volve the same letter-strings (unless, of course, both
runs start with the same random number seed). On
the other hand, at the level of description of the
Trace, a typical run consists of a few dozen steps.
At this level of granularity, each step corresponds
to a single event represented in the Trace—each of
which arises from the actions of many codelets.
For example, Figure 1 shows the contents of

the Trace after a run on the problem “abc⇒abd;
xyz⇒?”, in which the program, after trying unsuc-
cessfully a couple of times to take the successor of
z, answers xyd . The events that occur during the
run appear left to right in chronological order. Al-
though this run involves a total of 1,558 codelets,
the high-level picture shown in the Trace consists of
just twelve events, which represent the “major mile-
stones” encountered along the way in the program’s
search for an answer. Such events include the acti-
vation of concepts in the Slipnet, perceiving entire
strings as single, chunked wholes, creating new rules
for describing string changes, hitting a snag, and
discovering a new answer.
For instance, as can be seen in the figure, the Slip-

net concept identity gets activated early on in this
particular run (due to the program perceiving the
a ’s and b’s in abc and abd as corresponding). This
is followed by the perception of abc and xyz as pre-
decessor groups going in the same direction (to the
left). The next event records the creation of the rule
Change letter-category of rightmost letter to succes-
sor for describing abc⇒abd , which leads inevitably
to a snag. In the aftermath of the snag, another rule
is created (Change letter-category of rightmost letter
to ‘d’), and abc and xyz are reperceived as succes-
sor groups (again going in the same direction—only



Figure 1: The temporal record of a run on the problem “abc⇒abd; xyz⇒?”.

this time to the right). However, the program again
attempts to use the first rule, resulting in another
snag. Finally, after creating yet another rule and
again perceiving xyz as a successor group, the pro-
gram finds the answer xyd .

Pattern-clamping and Self-control

The Trace allows Metacat to monitor the subcogni-
tive processing activity in the Workspace at a very
abstract and highly-chunked level of description, en-
abling the program to “see” what it is doing dur-
ing a run. Equally important, however, is the pro-
gram’s ability to respond to what it sees by clamping
particular themes and concepts at high activation,
resulting in strong top-down pressure on process-
ing. Various types of patterns consisting of sets of
themes, concepts, or codelet types can be clamped
by the program in response to different situations
that arise. Clamping a pattern alters the probabil-
ities that certain types of codelets will run, or that
certain types of Workspace structures will get built,
effectively steering the behavior of the program in
particular directions. This may lead the program to
revise its interpretation of a problem, by catalyzing
the reorganization of structures in the Workspace in
accordance with the ideas represented by the pat-
tern.
Metacat’s ability to revise its perception of a sit-

uation in response to events in the Trace affords
the program a very powerful degree of self-control.
Patterns—especially patterns of themes—act as a
“medium” through which the program is able to
wield control over its own behavior. For example,
in the problem “abc⇒abd; xyz⇒ ?”, the program
usually perceives abc and xyz as going in the same
direction at first, which leads to a snag (as in the
run shown in Figure 1). This interpretation of the
problem, based on the idea that letters having iden-
tical positions in their respective strings correspond
to one another (a to x, b to y, c to z ), is charac-
terized by a String-Position: identity theme. When
an event is recorded in the Trace, the themes most
active at the time of the event are also noted along
with it. These themes serve as the event’s thematic
characterization. In the case of a snag event, the
thematic characterization represents an interpreta-
tion of the problem that has just led to failure. If
Metacat continues to hit the same snag several times
in succession, a series of snag events will accumulate
in the Trace, all with very similar thematic char-
acterizations. This similarity may be noticed by

codelets (the probability becoming higher as more
snags accumulate), causing them to take action by
clamping the “offending” themes (such as String-
Position: identity) with strong negative activation.
This encourages the program to explore alternative
interpretations of the problem by steering it away
from the ideas causing the snag, which may subse-
quently lead it to the discovery of other answers,
such as wyz . In this way, Metacat can recognize its
own repetitive behavior and respond accordingly.
Two types of codelets are responsible for exam-

ining and responding to events unfolding in the
Trace. The first type, called a Progress-watcher, is
responsible for deciding whether or not to unclamp a
clamped pattern. If a Progress-watcher codelet runs
while a pattern is clamped, it examines the most
recent event in the Trace to determine how much
time has elapsed since the event occurred. Gener-
ally speaking, the purpose of clamping a pattern is
to precipitate a series of events that reorganize the
perceptual configuration of the Workspace in some
way. It is therefore better to wait until the structure-
building activity occurring in the wake of a clamp
has settled down before concluding that the clamp
has “run its course”. Accordingly, if the amount
of time since the most recent event in the Trace
is less than some minimal settling period, then the
codelet simply fizzles, leaving the clamped pattern
still in effect. On the other hand, if enough time
has passed without any new important events hav-
ing transpired, the codelet unclamps the pattern and
then determines the amount of progress that was
made since the clamp occurred. Depending on the
amount of progress achieved, the codelet may decide
to post a follow-up codelet in order to see whether a
new answer can be made based on the newly-created
structures.
The criteria for judging the success of a clamp

can vary. Sometimes, the purpose of clamping a
pattern is to promote the creation of specific types
of Workspace structures. Other times, the purpose is
to encourage the creation of structures of any type,
so long as they are compatible with the clamped
pattern. The progress achieved by a clamp can be
measured by observing the number of structures that
get built in the immediate aftermath of the clamp,
and the extent to which they are compatible with
the pattern.
If no patterns are clamped when a Progress-

watcher codelet runs, then instead of checking on
the progression of events in the Trace, the codelet



checks on the current rate of structure-building ac-
tivity in the Workspace. This activity is measured
by a single number that serves as a quick estimate of
the “freshness” of the current Workspace structure
configuration. More precisely, it is an inverse func-
tion of the average age of the most recently created
structures. Thus the activity level tends to remain
high as long as new structures are being built, but
eventually drops to zero in the absence of new struc-
tures.
If the activity level is zero, indicating that nothing

much is happening in the Workspace, then Metacat
may have arrived at an impasse in its search for an-
swers to the current problem. This is not quite as
bad as hitting a snag, but it still ought to prod the
program into trying something different. However,
in the case of an impasse, there is usually no clear
set of “offending” structures or themes on which to
pin the blame, unlike in the case of a snag. Indeed,
the impasse may well arise from a lack of appropri-
ate structures, rather than from the existence of the
“wrong” structures.
Therefore, in the absence of Workspace activity,

Progress-watcher codelets check to see whether par-
ticular types of new structures are needed. For ex-
ample, a codelet may examine the quality of the
rules that have been built so far. If no good rules
yet exist, the codelet may try to encourage the cre-
ation of better rules by clamping a pattern that
strongly increases the probability that rule-seeking
codelets will run, while simultaneously inhibiting
other types of codelets. Eventually, other Progress-
watcher codelets will turn off the clamp once enough
time has passed without any more events being
added to the Trace. Since this type of clamp is
only concerned with the creation of new rules, the
amount of progress achieved is judged solely on the
basis of the quality of the rules that get created in
the clamp’s wake.
The second type of codelet that “watches the ac-

tion” from the high-level vantage point of the Trace
is called a Jootser (short for “jumping out of the
system”). These codelets are responsible for notic-
ing repetitive behavior that the program has fallen
into. An example of such behavior arising from a
snag was sketched above. However, Jootser codelets
are sensitive to other kinds of situations as well. For
example, it is possible for Metacat to become “fix-
ated” on some idea, such that it ends up clamping
the same pattern over and over again, without mak-
ing any significant progress. In this case, too, Jootser
codelets may notice the series of recurring events in
the Trace and take action.
For instance, if an analogy problem happens to

involve a string that changes in some difficult-to-
describe way, the program may end up repeatedly
clamping patterns in an attempt to spur the creation
of better rules for describing the change. Repeti-
tive clamping behavior can even arise from unsuc-

cessful attempts to break out of a cycle of snags.
That is, clamping a pattern in response to a recur-
ring snag may prove to be ineffective, leading only
to further snags and more pattern-clamping, rather
than to a new interpretation of the problem. Faced
with several similar clamp events in the Trace, a
Jootser codelet decides probabilistically whether to
“joots” based on the number of clamps and the aver-
age amount of progress achieved by each. The more
clamp events there are, the more likely jootsing is to
occur, especially if the amount of progress is low, un-
less recent clamps appear to be making more head-
way than earlier ones. Unlike jootsing from snags,
however, jootsing from a series of recurring clamp
events does not involve the clamping of any new pat-
terns in response. Instead, Metacat simply “gives
up” in a graceful manner and stops.
In a sense, Metacat’s ability to respond to a re-

curring snag by focusing on alternative ideas can
be thought of as “first-order” jootsing. In contrast,
the program’s ability to eventually give up when it
recognizes that its repeated attempts to circumvent
a snag are leading nowhere can be thought of as
“higher-order” or “meta-level” jootsing (i.e., joots-
ing from repeated unsuccessful jootsing). The im-
portant point is that the same general mechanisms
are responsible for first-order and meta-level joots-
ing in Metacat—namely, Jootser codelets and the
explicit representation of processing events in the
Trace.

An Example of Jootsing
The following example illustrates the idea of joots-
ing. In this run, Metacat is given the problem
“eqe⇒ qeq; abbbc⇒?”. The program builds up
an interpretation of the string abbbc as a successor
group composed of the letter a, the group bbb, and
the letter c. The two rules shown below are also
created to describe the eqe ⇒ qeq change:

• Swap letter-categories of all objects in string

• Change letter-category of leftmost letter to ‘q’
Change letter-category of middle letter to ‘e’
Change letter-category of rightmost letter to ‘q’

Around time step 1100, the program attempts to
apply the first rule to abbbc, which results in a snag,
since the idea of a three-way swap involving the let-
ters a, b, and c makes no sense (see Figure 2). Of
course, if it had chosen to use the second rule in-
stead of the first, then it would have found the an-
swer qeeeq , but it prefers the first rule, since this
rule is more abstract.
Over the next 3000 time steps, the program tries

again and again to swap the letters of abbbc, of-
ten breaking various structures in the process, but
always rebuilding them in the same way as be-
fore. Eventually, at time step 4280, a Jootser



Figure 2: Attempting to swap the letters of abbbc

codelet notices the pattern of recurring snag events
in the Trace, all of which involve the themes
String-Position: identity, Object-Type: identity, and
Object-Type: different. These themes arise from the
program’s interpretation of the letters e, q, and e
in eqe as corresponding, respectively, to the let-
ter a, the group bbb, and the letter c in abbbc.
The Object-Type: identity theme is based on the
e–a and e–c correspondences, while the Object-
Type: different theme results from the correspon-
dence between q and bbb, since one is a letter and
the other a group.
In hopes of finding a way around the recurring

snag, the codelet decides to negatively clamp the
Object-Type: identity theme. In the wake of the
clamp, abbbc is reinterpreted as a predecessor group
going to the left, and a new rule is created to describe
eqe ⇒qeq , but these new structures do not really
change the basic situation. Soon afterwards, another
Jootser codelet tries again, this time clamping both
Object-Type themes, which essentially “paralyzes”
the program for the duration of the clamp, since
no structures can be built that are compatible with
both of these themes simultaneously. Figure 3 shows
the state of the Workspace and Trace at the time of
the second clamp.
A few hundred codelets later, the program hits

the snag again. This is followed shortly thereafter
by another clamp. This clamp, like the one before it,
achieves no new progress. After hitting the snag yet
again, the program finally decides to give up. More
precisely, at time step 5933, a Jootser codelet notices
the three clamp events in the Trace, all of which in-
volve overlapping thematic characterizations. More-
over, neither of the two most recent clamps have
resulted in any discernible progress, which further
increases the probability of jootsing. Consequently,
the program prints the message “this is getting bor-
ing, I can’t think of anything else to try” and then

Figure 3: Clamping patterns in response to snags

ends the run.
As this example shows, Metacat is able to realize

when it is “stumped”, instead of just cycling end-
lessly. The program’s ability to monitor its own pro-
cessing at an abstract level of description affords it
a great deal of flexibility and self-control, and, it is
to be hoped, represents a step toward the goal of
understanding the cognitive mechanisms underlying
human self-awareness.

References
Carbonell, J. (1986). Derivational analogy: a the-
ory of reconstructive problem solving and exper-
tise acquisition. In R. Michalski, J. Carbonell, &
T. Mitchell (Eds.), Machine learning, volume 2.
San Francisco: Morgan Kaufmann.

Chi, M., de Leeuw, N., Chiu, M.-H., & LaVancher,
C. (1994). Eliciting self-explanations improves un-
derstanding. Cognitive Science, 18:439–477.

Hofstadter, D. R. (1984). The Copycat project: an
experiment in nondeterminism and creative analo-
gies. AI Memo 755, MIT Artificial Intelligence
Laboratory.

Hofstadter, D. R. & the Fluid Analogies Research
Group (1995). Fluid concepts and creative analo-
gies. New York: Basic Books.

Marshall, J. (1999). Metacat: a self-watching cogni-
tive architecture for analogy-making and high-level
perception. Doctoral dissertation, Department of
Computer Science, Indiana University, Blooming-
ton. http://www.cs.pomona.edu/marshall/metacat.pdf

Mitchell, M. (1993). Analogy-making as perception.
Cambridge, MA: MIT Press/Bradford Books.

Veloso, M. (1994). Planning and learning by analog-
ical reasoning. Berlin: Springer-Verlag.


