The Multiple Roles of Anticipation in

Developmental Robotics

Douglas S. Blank', Joshua M. Lewis’, and James B. Marshall’

' Computer Science Department,
Bryn Mawr College, PA, USA
dblank @cs.brynmawr.edu
> Computer Science Program,
Pomona College, CA, USA
{jlewis, marshall } @cs.pomona.edu

Abstract

Anticipatory systems have been shown to be useful in
discrete, symbolic systems. However, non-symbolic
anticipatory systems are less well understood. In this paper,
we explore the use of anticipation within the framework of
connectionist networks to bootstrap from an innate
behavior; to drive a reinforcement signal; and to provide
feedback on the learnability of a task.

Developmental Robotics

Developmental robotics is an approach to artificial
intelligence that focuses on the autonomous self-
organization of a general-purpose control system. Rather
than being programmed to solve a particular task, a robot
in the developmental robotics paradigm is programmed to
develop sophisticated, self-organized representations and
self-motivated behaviors over time. Such a robot begins
with nothing but a “seed” program consisting of a simple
innate behavior, a motivational system, and a learning
system. There is no a priori task to master, only a general
goal to develop “mentally” and behaviorally.

Developmental robotics brings together several
paradigms falling under a range of rubrics, including
embodied cognition, biologically-based robotics, artificial
animals (animats), reinforcement learning, evolutionary
computation, and machine learning. However,
developmental robotics is unique in its insistence on goal
non-specificity for systems. Therefore, central issues in
this field are those at the heart of artificial intelligence:
What feature detectors and concepts should be built into
the system? How does the system “decide” what to do
next? What drives the system to “want” to do anything?
Indeed, perceiving the world and deciding which actions
to perform are two of the hardest problems of Al
However, developmental robotics advocates combining
these two problems into one and letting a solution grow
through the experience of the robot.

Many learning mechanisms that are based on

Copyright © 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

optimizing a fitness measure are not useful in this domain
because there is no task by which to measure performance.
However, the idea of anticipation has been found to be
useful in multiple ways in the learning and motivation
processes. This paper explores three roles of anticipation
in a connectionist developmental robotics context.

Roles of Anticipation

Recently, anticipatory learning systems have gained
increasing attention in the field. Butz, Sigaud, and Gerard
(2002) give an overview of several such systems.
However, their summary is limited to those models that
can be framed in a Markovian paradigm. That is,
anticipation is explored in a partially observable Markov
decision process (POMDP). However, to have anticipation
work in such a framework requires a system to have three
properties. First, the Markovian assumption must hold: the
next state of the system depends only on the current state.
Therefore, the next state cannot be determined by context,
unless context becomes part of the previous state. Second,
perceptions and actions must be appropriately discretized.
Third, these discrete representations cannot change over
the course of learning. However, we view these
representations of perceptions and actions as something
that should be created by the system itself. How can the
system's representations of its perceptions be based on the
actions made by the system, while the representations of
the actions are in turn based on the perceptions?

We believe that the answer to this chicken-and-egg
dilemma is to start a system with a set of innate
representations of perceptions and actions, and allow the
system to gradually modify them over time. Thus, we
believe that the space of representations should be
continuous and mutable. This leads us in a different
direction than, say, Witkowski's Dynamic Expectancy
Model (2002). Rather than creating a “hypothesis engine”
and a logic for determining when and how to create
hypotheses, we have implemented our system as an
artificial neural network. The main difference between
such a Markovian system and a neural network

(connectionist) system is the form of the hypotheses and
actions. As noted, the Markov process requires discrete
symbols and actions, and therefore discrete hypotheses.
However, artificial neural networks can utilize non-
symbolic, distributed representations, and thus implement
a continuum of hypotheses and actions. In this manner,
distributed, connectionist representations allow many
hypotheses to be active and tested at any one time. In
addition, such a system also allows for a system to deal
naturally with probabilistic and noisy environments.
Connectionist systems offer the ability to exploit
information without having a full-fledged hypothesis. We
have found that the question of what can be learned from a
prediction task is much subtler in a connectionist network
than in a POMDP, and potentially much more powerful. In
the following sections we present three different methods
that can be used in self-organizing anticipatory systems.

Anticipation for Bootstrap Learning

In a series of now-classic experiments, Elman (1990)
showed that a connectionist network that was trained to
predict the next word when given a random sentence could
not, of course, guess the next word exactly. However, the
prediction task did force the network to develop
representations that reflected the syntax and semantics of
the grammar of the sentences. His experiments show that
no innate knowledge is needed in order to develop
grammatical concepts such as noun and verb.

One can ask a similar question in robotics: How
much innate information does a developmental robotics
system need to know about its own sensors and actuators?
Pierce and Kuipers (1997) demonstrated that a simulated
robot armed with not much more than the ability to make
correlations and predictions can learn most everything that
it needs to know about itself, including its sensor types,
sensor positions, and its degrees of freedom of movement.

Their system first gathered information from its
sensors as the simulated robot made random movements in
a room. At first, the robot does not know if a particular
sensor reading is a camera pixel, a sonar reading, or
something else entirely. However, after analyzing the
qualitative properties of sensor readings over time, sensors
could then be clustered into similar groups. For example,
each sonar sensor varies over a similar range of values as
the others, as do each camera pixel, laser sensor, joint
reading, etc.

Each sensor in a cluster is then arbitrarily assigned a
position in a low-dimensional (often 2D) space (Pierce and
Kuipers 1997). These positions are adjusted so as to reflect
associated pairwise distances between the sensor readings
in a given cluster, in a manner similar to learning in a self-
organizing map (Kohonen, 2001).

Starting with no knowledge about its sensor types or
sensor topology, such a system now has a foundation to
take advantage of higher-order analysis, such as
prediction. First, higher-order features (such as
discontinuities, local minima, and local maxima) are
proposed. Proposed features are evaluated based on

stability, predictive power, and extensibility (Pierce and
Kuipers, 1997). Evidence is collected for motor commands
that cause sensor reading changes in predictable ways.

In such systems, anticipation and correlation are tools
used to bootstrap a robot from having zero knowledge
about itself, to being able to understand its body, sensor
topology, and environment.

Anticipation as a Reinforcement Signal

As we have seen, anticipation can be used to create the
foundations of basic concepts of self. We now examine a
system that uses anticipation at a higher level. Marshall,
Blank, and Meeden (2004) used anticipation as the basis
for generating an internal reinforcement signal for training
a simulated robot. In this system, a simple recurrent
network (SRN) was used to generate motor actions to be
performed by the robot, together with predictions of the
robot's next sensory state. Both sensory states and motor
actions were represented as continuous, distributed
patterns of network activation values.

M e P
\ /
My S C

Figure 1. Network architecture for the two-stage
error-centering robot controller.

The network architecture used is shown in Figure 1.
The robot's predicted next sensory state, P, is determined
by its current motor action M, its current sensory state S,
and its past experience, represented by the recurrent
context layer C of the network. The robot's next motor
action to perform, Moy, is determined by S and C, with the
Min layer temporarily disabled. The robot's anticipatory
subsystem comprises the Min, S, C, and P portions of the
network, while its control subsystem comprises the S, C,
and Moy portions. The weights from the S and C banks of
units to the hidden layer are shared between both
subsystems. Training proceeds in an interleaved fashion,
with the robot learning to anticipate while simultaneously
learning to act in its environment.

Sensory states consisted of a two-dimensional spatial
representation of the robot's visual field. On each training
step, the robot's observed sensory state was compared to
the state predicted by the network, and a spatial map of the
prediction error was generated. The innate task of the
robot was to learn to focus its attention on unanticipated
sensory information by centering its visual field on the
region of greatest error. On each time step, a positive or
negative reinforcement signal was determined by whether
the bulk of the prediction error moved toward or away

from the center of the visual field.

Figure 2 shows the simulated robot in its
environment. The robot is at the center of an empty
circular arena, with an extra “decoy” robot on the
periphery (the straight lines indicate the robot's visual
field). The trained robot has only one degree of freedom:
it is capable of rotating left or right, but is fixed at the
center of the arena. The decoy roams around the arena's
edge under control of a simple obstacle-avoiding behavior.

[stage TN BIEE

File “iew Action

Figure 2. Environment for the error-centering robot.

The goal of the experiment was for the system to learn to
predict the next state, and to center its view on the region
of maximum error. These two tasks, however, cause
interesting dynamics in the system. For example, as the
system learns to make better predictions, the error
decreases, and the system begins to look away. However,
if a motor action causes an unanticipated prediction, then
the system again attempts to center on the error.

Through the interaction of these two competing tasks,
the robot first moves around randomly, then begins to
“track” the decoy robot, and finally begins to anticipate
the movements of the robot. In effect, the robot learns to
track the decoy wusing only the self-generated
reinforcement signal based on prediction error as
feedback. The expectation is that as learning progresses,
the robot will gradually “get bored” and continually search
the environment for new sources of novel stimuli.

Anticipation as a Learning Accelerator

In the previous section we described a system that
attempts to center on the prediction error while
simultaneously learning to decrease error. One drawback
of this approach is that it can become “fixated” on random
patterns, such as white noise on a television screen
(Oudeyer et al. 2005). In such a case, the robot would
repeatedly attempt to focus on the noise without ever
learning to predict it accurately. To explore this problem,
we again consider how prediction can help. If the robot

could predict that a particular situation was unlearnable,
then it might break free of the situation.

Consider the following variation on the classic
exclusive-or (XOR) problem. In this version, we have two
XOR problems side by side. That is, there are four inputs
and two outputs, for a total of 16 patterns. A standard
backpropagation network (Rumelhart et al. 1986) can
learn this double-XOR task. However, we now make the
problem harder by embedding it within a larger set of
“noisy” patterns. We do this by duplicating the input
patterns and substituting randomly-generated training
targets in place of the XOR targets for these inputs. These
random targets are generated anew on every training step,
instead of remaining static.

To distinguish noisy from non-noisy patterns, we add
a 2-bit “flag” to each input. The 2-bit flag defines four
possible categories, allowing the proportion of
unpredictable patterns in the dataset to be varied between
0%, 25%, 50%, and 75%. For example, a dataset with
75% noise would consist of the 16 patterns with flag bits
00 shown in Table 1, together with three similar sets of
patterns with flag bits 01, 10, and 11 whose targets are
randomly generated on each training step, for a total of 64
patterns.

Input Output Target
00 00 0O 00
00 00 01 01
00 00 10 01
00 00 11 00
00 01 00 10
00 01 01 11
00 01 10 11
00 01 11 10
00 10 00 10
00 10 01 11
00 10 10 11
00 10 11 10
00 11 00 00
00 11 01 01
00 11 10 01
00 11 11 00

Table 1. Inputs and non-random targets for the Noisy
XOR problem. The input consists of a 2-bit noise flag
followed by 4 inputs to two XOR problems. The outputs
are the exclusive-or of the respective pairs of non-flag
inputs.

Although this is a harder problem with the addition of
the noisy distractor patterns, a standard connectionist
network can still learn to produce valid outputs for the
patterns in Table 1. However, the performance of the

Error Anticipation Layers

Output EA1 EAn Hidden Layer Anticipation

1

Hidden

7

Input

Figure 3: Network architecture.

network can be substantially improved using two learning
strategies, which fall into the category of “hints.”

Abu-Mostafa (1990) explored the idea of using
“hints” in learning systems. He defined a hint to be any
information that could be used to learn more effectively in
a neural network. Abu-Mostafa examined two types of
hints: specially crafted sets of input-output pairs, and
additional constraints on the weights. However, both of
these types of hints had to be carefully constructed by the
designer. Following Abu-Mostafa, Suddarth and Holden
(1991) developed the notion of a “catalytic hint.” These
hints formed an easier version of the main task, which was
learned first. After the network had mastered this
simplified task, it was then switched to the harder task.
Suddarth and Holden showed that by using the catalytic
hint technique, some problems could be learned more
quickly. However, again the simplified task had to be
carefully chosen by the designer.

We wish to expand on the idea of catalytic hints, by
incorporating them into the developmental robotics
paradigm. This requires, however, that they not be crafted
by the modeler. Therefore, we will investigate a type of
catalytic hint that is provided by the network itself. We
call these “autocatalytic hints.” We have developed two
such techniques: Error Anticipation (EA) and Hidden
Layer Anticipation (HLA).

250

Standard

Error Anticipation - -- -
Hidden Layer Anticipation e

200

150 F

100 F

50

0 200 400 EQO 800 1000 1200

250

200

150

100 F

]

Both strategies use a three-layer backpropagation
network consisting of an input layer, a hidden layer, and
an output layer split into several components. The first
component of the output layer, labeled Output in Figure 3,
attempts to produce the correct target patterns for each
input pattern, as in a standard neural network.

The next components of the output layer, labeled EA
1 through EA n in Figure 3, perform Error Anticipation.
EA involves training the network to anticipate the error of
its own Output component. Before updating weights, the
input activations are propagated through the network and
the activation of the Output component is compared with
its training target, resulting in an error vector. The target
for the EA1 component of the output layer is that error
vector. This process can be repeated multiple times.
Another EA component can predict the error vector of the
previous EA component (EA2 predicts the error of EAl),
and so on. Our experiments used two EA components.

The final component of the output layer is the Hidden
Layer Anticipation component. This component attempts
to reproduce the activation of the hidden layer for the
current input. During the same propagation step used for
EA above, we record the activation of the hidden layer and
set it as the target for the HLA component of the output
layer. This effectively trains the network to predict its
own internal representations of the input patterns.

On some trials we disable the effects of EA or HLA
by using fixed target values of 0.5 for the EA or HLA
components, without changing the structure of the network
itself.

Figure 4a shows 30 training runs on a dataset with
75% unpredictable patterns: 10 runs with EA and HLA
disabled (solid lines), 10 runs with EA enabled (dashed
lines), and 10 runs with HLA enabled (dotted lines).
Training epochs are plotted on the x-axis, and the Output
component's total sum squared error (TSS) for the
predictable patterns is plotted on the y-axis. Standard
backpropagation is able to learn the predictable patterns
even in the presence of random distractions, although not

Standard
Error Anticipation - ----
Hidden Layer Anticipation -

0 200 400 E0O a00 1000 1200

Figure 4. Plot of TSS error vs. training epoch for datasets containing (a) 75% noise and (b) 0% noise, showing
10 runs using standard backprop, 10 runs using EA, and 10 runs using HLA.

Standard Heural Het

1.5
8.5 g f :‘kh

-8.9
-1 b

=1,5

-2

-2 -1.5 -1 -8.5 a 8.5 1 1.5 2

-8.5

=1.5

Error Anticipation

1,5

e.5 - ®

-1 b

5 L L L L
-2 -1.5 -1 -8.,5 a 8.5 1 1.5 2

Figure 5. Plot of first two principal components of hidden representations developed using standard backprop
(left) and EA (right), showing predictable inputs (X) and unpredictable inputs (O).

all of the runs have achieved a low TSS error by 1200
epochs. Turning on EA improves the speed and accuracy
of learning. FEight of the ten EA runs attained a low TSS
error by 1200 epochs. Using HLA instead of EA results in
an even more dramatic improvement. With HLA, very
low error is achieved on all runs by 600 epochs.

We ran the same experiment on datasets with 50%,
25%, and 0% unpredictable patterns. As the dataset
becomes more deterministic, the effects of EA and HLA
on learning become less pronounced, although HLA
retains a slight edge over the other two methods. Figure
4b shows the results for a dataset containing no
unpredictable patterns.

We believe that EA and HLA assist the learning
process by causing the network to develop hidden
representations that better distinguish the predictable
inputs from the unpredictable inputs. To test this idea, we
performed principal components analysis on the hidden
representations developed by networks using EA and by
networks with EA disabled. Figure 5 plots the first two
principal components for an EA and a non-EA network
after 1200 training epochs. The EA network does a much
better job of segregating the predictable inputs (X) from
the unpredictable inputs (O). However, representations
created by HLA did not seem to achieve as clean a
separation as in the case of EA.

HLA has a more pronounced impact on the speed of
learning. However, it is not clear why HLA has such an
impact. Our current hypothesis is that the effect of HLA
varies over three stages of the learning process, as follows.

In the first stage, the majority of the network's output
layer error comes from the Output component (see Figure
6). Since the weights from the input layer to the hidden
layer are randomly initialized, as are the weights from the
hidden layer to the HLA component, the activations of the
HLA component and the hidden layer are already near 0.5
and thus there is not much error from this component. In
addition, the majority of the error comes from the

predictable input patterns—since their targets are either 0
or 1, whereas the unpredictable inputs have real-valued
targets ranging from O to 1 and averaging 0.5. Thus the
initial expected error from predictable inputs is 0.5 and
from unpredictable inputs is 0.25. The predictable input
samples account for the majority of learning from the
input to hidden layer at this stage. Even if the
unpredictable samples had discrete targets (resulting in an
equivalent expected error), half of them would be
“correct” and the “incorrect” samples would still have less
influence. In fact, HLA worked similarly in our tests with
discrete random targets.

250

Output Component TSS - -- -
HLA Component TS5 ——

0 B

150 F

100 p

50

0

400 BO0 200 1000 1200

Figure 6. Plot of TSS error on the Output and HLA
components of the output layer.

In the second stage, the TSS of the Output component
plummets, and the TSS from the HLA component rises.
This is the critical stage where the HLA strategy does
much better than the other strategies. In this stage we
believe that the HLA component is minimizing damaging
weight changes between the input and hidden layers.

Recall that backpropagation works by adjusting the
weights based on the amount of error on the output layer.
Therefore, the network is continually changing the weights
whenever it encounters unpredictable patterns.

Consider the first unit of both the hidden layer and
the HLA component of the output layer. During the first
stage of learning, the hidden layer unit will have become
either activated (closer to 1) or inactivated (closer to 0)
when presented with a certain input pattern. The HLA
unit will learn to reproduce this, but will likely lag behind
slightly, since it will always be learning before the weight
changes from the Output component are applied for a
particular input. For example, for some arbitrary input, the
hidden unit might be activated at 0.8, and the HLA unit
might be activated at 0.7. In this case (and the
corresponding low activation case) the backpropagation
step will cause the hidden layer unit to become even more
activated the next time around, assuming the weight
between the two units is positive. In this way, HLA
speeds up the learning between the input and hidden layers
—reinforcing the initial movements of the hidden layer
activations. This learning rate increase is also observable
in training sets with 0% unpredictable patterns—the HLA
networks still perform somewhat better initially than their
standard counterparts.

If we imagine that the training sample is random,
however, and that the Output component target is the
opposite of what it should be, then the Output component
will likely propagate back error that would reduce the
activation of the hidden unit. However, at the same time,
the HLA component will propagate back error that would
increase that same activation. This is the key assistance
that HLA provides in the second stage. Once the network
starts learning its problem partially, the discrepancy in
expected error mentioned above begins to disappear, and
predictable inputs no longer carry more weight. In this
situation HLA helps the network “remember” the direction
its learning was proceeding in. This memory may not
always be beneficial. If the initial training samples
presented to a network push it toward a local minimum in
the error space, HLA will likely make it more difficult for
the network to break away from that path and find the
absolute minimum.

In the third stage, the TSS error from both the Output
component and the HLA component is very small, but the
HLA error is higher in part due to the greater number of
units in the HLA component. Here, HLA is simply a
distraction, and it prevents HLA networks from achieving
the same low error that non-HLA networks can achieve.
One possible improvement on HLA would be to turn it off
once the Output error reaches some predetermined target
value.

We performed several follow-up experiments to
verify the impact of HLA on other noisy data sets.

First, we wondered whether we would see similar
effects with datasets of randomly-generated input patterns.
We created a new dataset consisting of 50 unique input
patterns of size 10 paired with 50 target patterns (not

necessarily unique) of size 5. All bits were determined by
random "coin tosses". A few example patterns are shown
below.

Input Output Target
0101111001 10001
1101111000 00110
0000101011 11111
1110000000 01101
1011010000 11111
0100011001 01100

For each experiment, a portion of the input patterns
were designated as unpredictable noise; for these inputs,
new binary target patterns were generated on each training
step as before, rather than using the original randomly-
generated target pattern of the dataset. We tried several
different levels of noise: 75%, 50%, 25%, and 0% of the
dataset. Unlike in the XOR dataset, input patterns had no
explicit flag bits to indicate whether or not an input was
predictable, since all bits were randomly generated.
Because HLA seems to have a greater impact on learning,
we did not use EA in these experiments.

The network architecture consisted of 10 input units,
15 hidden units, 5 output units, and 15 hidden layer
prediction units. Prediction could be disabled, as a
control, in which case training targets of 0.5 were used for
the prediction units instead of the hidden layer activations,
as before.

We found no significant difference between the
performance of standard backpropagation and HLA in this
case. In fact, prediction seemed to actually hinder the
learning process. One possible explanation is that this
randomly-generated dataset may be too easy for the
network to learn, and thus hidden layer prediction affords
no clear advantage over regular backpropagation. With
10-bit patterns, the input space consists of 2'° = 1024
possible patterns, but only 50 were included in the dataset.
This gives the network ample freedom to “draw”
separating hyperplanes between the predictable and
unpredictable input patterns. In other words, it is
relatively easy for the network to learn to distinguish the
“signal” from the “noise” of this dataset, without relying
on the extra machinery of hidden layer prediction. Given
that conclusion, HLA performs much as we would expect.
It slightly accelerates learning in the early epochs, but the
noise created by HLA error in later epochs prevents the
network from achieving the low TSS error of the standard
approach.

In our final experiment, we created a new dataset
consisting of 64 unique 6-bit input patterns covering the
entire input space, paired with 2-bit target patterns. Since
the input patterns cover the entire space, the problem

should be “difficult” and HLA should once again assist
learning. This setup is very similar to the XOR training
set above, except there are no flag bits and the targets are
randomly generated (instead of being determined by XOR
operations). As before, we varied the percentage of the
input patterns designated as noise. For these experiments,
we used 9 hidden units (1.5 times the number of input
units, as before). The results for 75% noise are shown in
Figure 7. The five HLA runs all have significantly lower
TSS error than the five runs with HLA turned off. With
this training set, HLA once again provides a healthy boost
to learning.

In summary, we believe that HLA will assist learning
for many difficult and noisy training sets. EA may also
assist learning, but its effects tend to be more subtle.

Output TSS error for predictable input patterns
B x 9 x 2 network (B4 patterns, 752 noise)

Hidden layer prediction DN ——
Hidden layer prediction OFF

0 500 1000 1500 2000 28500 F000 3800

Figure 7. Plot of TSS error vs. training epoch for a
64-pattern dataset containing 75% noise, showing 5
runs with HLA on and 5 runs with HLA disabled.

Conclusion

This paper has explored the multiple uses of anticipation
in developmental robotics, especially in systems that
incorporate continuous, non-symbolic representations of
states and actions. We have seen that anticipation can be a
subtle but effective tool, useful for multiple purposes, and
in ways very different from those uses in symbolic
Markov Decision Processes. Yet, these experiments are
only suggestive of the potential power that may lie behind
connectionist anticipatory systems.

References

Abu-Mostafa, Y. (1990). Learning from hints in neural
networks. Journal of Complexity 6, pp. 192-198.

Butz, M., Sigaud, O., and Gerard, P. (2002). Internal
models and anticipations in adaptive systems. In
Proceedings of the Workshop on Adaptive Behavior in
Anticipatory Learning Systems. Seventh International

Conference on Simulation and Adaptive Behavior,
Edinburgh, Scotland.

Elman, J. (1993). Learning and development in neural
networks: The importance of starting small. Cognition,
43:1, pp. 71-79.

Kohonen, T. (2001). Self-Organizing Maps, Third edition.
Springer, Berlin.

Marshall, J., Blank, D., and Meeden, L. (2004). An
emergent framework for self-motivation in developmental
robotics. Proceedings of the 3rd International Conference
on Development and Learning, pp. 104-111, Salk Institute
for Biological Studies, La Jolla, CA.

Oudeyer, P.-Y., Kaplan, F., Hafner, V., and Whyte, A.
(2005). The Playground experiment: Task-independent
development of a curious robot. In Developmental
Robotics, Blank, D. and Meeden, L. (eds.), AAAI Spring
Symposium Technical Report, AAAI Press.

Pierce, D. M. and Kuipers, B. J. (1997). Map learning
with uninterpreted sensors and effectors. Artificial
Intelligence 92, pp. 169-227.

Rumelhart, D., Hinton, G., and Williams, R. (1986).
Learning in- ternal representations by error propagation.
In McClelland, J. and Rumelhart, D., eds., Parallel
Distributed Processing: Explor-ations in the
Microstructure of Cognition, Volume I, pp. 318-362. MIT
Press, Cambridge, MA.

Suddarth, S. and Holden, A. (1991). Symbolic-neural
systems and the use of hints for developing complex
systems. [International Journal of Man-Machine Studies,
35(3). pp- 291-311.

Witkowski, M. (2002). Anticipatory learning: The animat
as discovery engine. In Proceedings of the Workshop on
Adaptive Behavior in Anticipatory Learning Systems,
Butz, M, Sigaud, O., and Gerard, P. (eds). Seventh
International Conference on Simulation and Adaptive
Behavior, Edinburgh, Scotland.

http://icdl.cc/
http://icdl.cc/

