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Hierarchical Predictive Coding in Autonomous AI and 
Development

The idea that the brain is pro-actively mak-
ing predictions of the future at multiple levels 
of hierarchy has become a central topic to 
explain human intelligence and to design 
general artificial intelligence systems. In this 
issue, Jun Tani, who has been studying recur-
rent neural networks models of sensorimotor 
development for the last 20 years, introduces 
a dialog to ask whether hierarchical predictive 
coding enables a paradigm shift in develop-
ment robotics and AI. Andy Clark, Doug Blank, 
James Marshall, Lisa Meeden, Stephane 
Doncieux, Giovanni Pezzulo, Martin Butz, Ezgi 
Kayhan, Johan Kwisthout and Karl Friston 
give their perspectives on this topic. In partic-
ular, they discuss the importance of various 
complementary mechanisms to predictive 
coding, which happen to be right now very 
actively researched in artificial intelligence: 
intrinsic motivation and curiosity, multi-goal 
learning, developmental stages (also called 
curriculum learning in machine learning), and 
the role of self-organization. They also under-
line several major challenges that need to be 
addressed for general artificial intelligence in 
autonomous robots, and that current research 
in deep learning fails to address: 1) the prob-
lem of the poverty of stimulus: autonomous 

robots, like humans, have access to only lit-
tle data as they have to collect it themselves 
with severe time and space constraints; 2) 
the problem of information sampling: which 
experiments/observations to make to improve 
one’s world model. Finally, they also discuss 
the issue of how these mechanisms arise in 
infants and participate to their development.

In a new dialog initiation, Matthias Rolf, Lorijn 
Zaadnoordijk and Johan Kwisthout extend 
this discussion by asking whether and how it 
would be useful both epistemologically and in 
practice to aim towards the development of a 
“standard integrated cognitive architecture”, 
akin to “standard models” in physics. In par-
ticular, they ask this question in the context 
of understanding development in infants, and 
of building developmental architectures, thus 
addressing the issue of architectures that 
not only learn, but that are adaptive them-
selves. Those of you interested in reacting 
to this dialog initiation are welcome to sub-
mit a response by November 30th, 2017. The 
length of each response must be between 600 
and 800 words including references (contact 
pierre-yves.oudeyer@inria.fr).

Pierre-Yves Oudeyer

Inria and Ensta 
ParisTech, France

Editorial
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Message From the CDS TC Chair

Chair of the Technical 
Committee on Cognitive 
and Developmental 
Systems

Kathryn Merrick

School of Engineering 
and Information 
Technology,
University of New 
South Wales,
Canberra, Australia

As we reach the mid-point of 2017 it seems a 
good time to both reflect on our work this year 
and plan ahead.

So far this year we have discussed the addi-
tion of new goals for our technical committee 
and added two goals that consider machine 
recognition of cognitive characteristics in 
humans. Our technical committee goals now 
include:

• building machines capable of life-long 
adaptation and interaction with the physical 
and social world (existing goal)

• building machines that can model and rec-
ognise cognitive characteristics relevant to 
development in their human collaborators, 
and act accordingly to assist human activ-
ities (new goal)

• using machines as tools to better under-
stand human and animal development and 
cognition (existing goal)

• using machines to support human learning 
and development (new goal).

In June this year, I attended the IEEE 
Computational Intelligence Society Technical 
Activities meeting in San Sebastian, Spain. 
News relevant to researchers in cognitive 
and developmental systems includes the 
formation of two new technical committees: 
the first tasked with identifying the research 
challenges of the future that span across the 

existing Computational Intelligence Society 
technical committees; and the second tasked 
with considering the social and ethical chal-
lenges that may accompany future advances 
in computational intelligence. Both of these 
technical committees will benefit from input 
from CDS researchers and interested mem-
bers of our community are encouraged to 
contact the Technical Activities vice president.
 
I am also aware that members of our com-
munity have contributed to recent events in 
human-robot interaction (at HRI 2017 Vienna, 
Austria) and designing for curiosity (at CHI 
2017).

After the Second Workshop on Evolution in 
Cognition to be held at GECCO in July at GECCO 
(http://gecco-2017.sigevo.org/index.html/
Workshops), we look forward to ICDL-Epriob 
(http://www.icdl-epirob.org/) in Portugal 
in September as well as a host of work-
shops including and The Third International 
Workshop on Intrinsically Motivated Open-
ended Learning (http://www.imol-conf.org/) 
in Rome in October. 

It is exciting to see the ongoing efforts of 
members of our community and I look forward 
to further expanding our technical committee 
and task force members in the second part 
of this year as we seek to develop new task 
forces in the area of cognitive modelling.  

http://icdl-epirob.org/cdsnl
http://www.icdl-epirob.org
http://gecco-2017.sigevo.org/index.html/Workshops
http://gecco-2017.sigevo.org/index.html/Workshops
http://www.icdl-epirob.org/
http://www.imol-conf.org/
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This dialogue discusses the topic of predictive 
coding in developmental robotics, highlighted 
from my newly published book (Tani, 2016).

The book proposes that the mind is comprised 
of emergent phenomena, which appear via 
intricate and often conflictive interactions 
between the top-down intention for acting 
on the external world and the bottom-up rec-
ognition of the resultant perceptual reality. 
It is presumed that the skills for generating 
complex actions as well as knowledge and 
concepts for representing the world natu-
rally develop through entangled interactions 
between these two processes. This hypothesis 
has been evaluated by conducting nearly two 
decades of neurorobotics experiments using 
various recurrent neural network models 
based on the principle of predictive coding. 

Is predictive coding a paradigm shift in 
developmental or learning robots?
The idea of sensory-motor mapping has 
dominated for a long period in the study 
of behavior-based robotics. However, 
robots based on just sensory-motor map-
ping schemes cannot achieve human-level 
thinking and acting because they should 
be much more proactive toward the future 
as well as reflective of the past. In predic-
tive coding,  the  intention  for an action  is 
generated with prediction of the action’s con-
sequence. Likewise, the recognition of the 
actual consequence in the open environment 
reflects on the current intention by means of 
the error regression with the prediction error. 

Is implementation by RNN using error back-
propagation through time (BPTT) essential?
A notable advantage of RNN models is 
that they are di"erentiable. If the whole net-
work is built on a set of modular RNNs—for 
instance one RNN for each sensory modality 
of a robot, one to learn multi-modality asso-
ciations, and one for executive control—the 
whole also becomes differentiable. In this 
situation, a prediction error appearing at 
a particular spatio-temporal point in  the 
perceptual flow can be distributed into 
the whole network retrospectively using 
error backpropagation through time. If the 
whole network activity is imposed with par-
ticular macroscopic constraints such as 
multiple timescales  (for instance, different 
local subnetworks functioning at different 
timescales) or multiple spatial scales  (for 
instance, di"erent local connectivity distribu-
tion among subnetworks), some meaningful 
structures such as spatio-temporal hierarchy 
can self-organize as the result of end to end 

learning on this di"erentiable network. This 
type of development by means of the down-
ward causation cannot be expected if the 
whole system is composed of patchy assem-
blies of di"erent computational schemes.

Is staged development essential?
It is fair to say that the recent success of deep 
learning  is owed to a few researchers who 
have strongly believed for decades that the 
error backpropagation applied to di"erentia-
ble networks is the most e"ective machine 
learning scheme. Now, we witness that con-
volutional neural networks, long-term and 
short-term memory as well as neural Turing 
machine built on this idea show significant 
learning performance by using millions of 
training data available on the internet.

However, this deep learning approach sup-
ported by usage of huge amount of data 
cannot be applied directly to developmen-
tal robots because they are constrained 
by the so-called poverty of stimulus, 
just like human infants. For both robots and 
infants the amount of experience in the real 
world is quite limited. Still at least for infants, 
skills and knowledge can be developed ade-
quately with generalization even under such 
conditions. As pointed out by many others, it is 
expected that learning in one developmental 
stage can provide a “prior” for the one in the 
next stage thus drastically reducing freedom 
of learning. By this means, generalization 
with less amount of tutoring experience 
becomes possible. Based on this conception, 
developmental stage would proceed from 
physical embodiment levels  to more sym-
bolic ones. Tutoring should require a lengthy 
period wherein physical interactions between 
robots and tutors involve “sca"olding”: guid-
ing support provided by tutors that enables 
the bootstrapping of cognitive and social skills 

Exploring Robotic Minds by Predictive Coding Principle

Dialogue

(a) Predictive coding implemented by multiple timescales 
RNN and (b) self-organization of functional hierarchy for 
action generation.

Cognitive 
Neurorobotics 
Research Unit,
Okinawa Institute 
of Science and 
Technology,
Okinawa, Japan

Jun Tani
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Tani, J. (2016). Exploring Robotic Minds: Actions, 
Symbols, and Consciousness as Self-Organizing Dynamic 
Phenomena. Oxford University Press.

required in the next stage.

Can robots attain free will and consciousness?
For robots built on predictive coding, action 
and thoughts are generated as emergent 
phenomena when dense interactions between 
the top-down and the bottom-up process are 
developed in circular causality. It has been 
shown that chaos developed in  the higher 
cognitive levels drives the spontaneous gen-
eration of the next intentional action, which 
will then be modified by means of minimizing 

the resultant conflictive error with the outer 
world (Tani, 2016). It is speculated that the  
spontaneity in generating the next intention by 
chaos might account for the unconscious gen-
eration of free will reported by Benjamin Libet 
whereas e"ortful process of minimizing the 
conflictive error does the same for the post-
dictive conscious awareness of it. When 
robotic minds are built on such emergent phe-
nomena, those robots could have subjective 
experiences, just like us.

Jun Tani’s robotic explorations reveal the 
power and promise of hierarchical predictive 
coding as a bridge linking basic forms of sen-
sorimotor engagement with the emergence 
of higher and higher forms of abstraction 
and control. Prediction-based learning yields 
representational forms, at higher processing 
levels, that act to summarize, compress, and 
control, activity at lower levels. Staged devel-
opment with increasing flexibility results, 
since the process of level-by-level re-cod-
ing make lower-level knowledge available 
as ‘chunks’ for higher-levels to ‘program’ 
(re-purpose and re-organize). 

These architectures give concrete com-
putational form to ‘representational 
re-description’ —an endogenously-driven 
process in which sensory information is 
repeatedly re-coded (‘re-described’) in ways 
that support wider and more flexible kinds of 
use (Karmilo"-Smith (1992)—see also Clark 
and Karmiloff-Smith (1993), Cleeremans 
(2014), and Doncieux (2015). Prediction-
driven hierarchical learning results in just 
such a process of staged development—one 
in which each higher level seeks to separate 
out causes and regularities that govern or 
explain patterns extracted at the level below. 
This whole process—just as Karmilo"-Smith 
suggested—is constrained by powerful 
endogenous forces favoring elegance and 
simplicity. This is because the learning routine 
(see Pezzulo, Rigoli, & Friston (2015)) favors 
the fewest-parameter model able to deliver 
(across a wide variety of contexts) apt action 
and choice. Complexity-reducing re-descrip-
tions will thus continue to be sought even 
after behavioral success has been achieved. 
Such systems continually work on themselves 
to generate better and better (more powerful, 
less complex) models.

It is interesting to consider the potential (and 
potentially synergistic) influence of some 
potent additional elements prominent else-
where in the literature on the ‘predictive brain’ 
(for a review, see Clark (2016)). One such is the 
variable ‘precision-weighting’ of the predic-
tion error signal. Precision-weighting reflects 
the self-estimated reliability, for a given task 
in a given context, of specific prediction error 
signals. Increasing precision means increas-
ing the post-synaptic gain or ‘volume’ on 
select prediction error signals, thus tempo-
rarily accentuating their influence. On a foggy 
day (to take a common example) this would 
enable the system to increase the influence 
of auditory information and to reduce the 
impact of incoming visual evidence, allowing 
a greater-than-usual role for top-down visual 
prediction.

Estimated precision also helps determine 
the nature and locus of control (Pezzulo et 
al. (2015)). ‘Habitual’ control occurs when 
reliable (precise) sensory prediction error is 
rapidly resolved at lower levels of the pro-
cessing hierarchy. More reflective means 
of control occur when precise (salient, reli-
able) prediction error arises and is resolved 
at higher levels of processing. Variable pre-
cision-weighting would thus enable the 
selection of which ‘representational re-de-
scription’ should control behavior at a given 
moment. An important research horizon is to 
better understand forms of control (realized 
as top-down predictions) that entrain tempo-
rally extended sequences of inputs, so as to 
sustain long-term plans and projects of the 
kind we associate with distinct human agents. 
Distinctively human forms of conscious expe-
rience may emerge only when we ourselves 
turn up as ‘control elements’ in long-term 
predictive models governing our own future 

Precisions, Slopes, and Representational Re-description

School of Philosophy, 
Psychology and 
Language Sciences,
Edinburgh University,
Scotland, UK
andy.clark@ed.ac.uk

Andy Clark
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actions (see our ongoing project at www.x-
spect.org). 

Another potent additional element may be the 
slope of prediction—error minimization itself. 
An emerging proposal is that an adaptively 
valuable strategy is to seek out situations in 
which the slope of minimization of predic-
tion error is itself maximized (Oudeyer and 
Smith (2016), Jo#ly & Coricelli (2013), Miller 
and Clark (forthcoming)). This may help bring 
valence and emotion into the picture. The idea 
is that these track the rate at which prediction 
errors are being minimized relative to expec-
tations. When error is minimized at a greater 
rate than expected, positive valence results. 
Such agents will actively seek out good 
learning situations—‘sweet spot’ learning 
environments, where they can significantly 
improve their predictive model of some 
salient aspect of the world.

Finally, perhaps it is not just the slope but the 
location (within the predictive hierarchy) of 
‘better-than-expected’ prediction error min-
imization that matters. In a re-descriptive 
hierarchy, unexpectedly resolving prediction 
errors occurring at the higher levels will often 
signal a kind of ‘falling into place’ in which 
multiple tensions and inconsistencies are 
resolved at a single stroke—as when we sud-
denly succeed in seeing the hidden image in a 
‘magic eye’ (autostereogram) display, or spot 
a mathematical derivation linking one body 
of results to another. Positive valence would 
then track not merely the rate, or the quantity, 
of prediction error minimization (relative to 
expectations) but also the quality. 

This work was supported by ERC Advanced Grant XSPECT - DLV-692739

Clark, A. (2016) Surfing Uncertainty: Prediction, Action, 
and the Embodied Mind (Oxford University Press, NY)
Clark, A. and Karmilo!-Smith A. (1993) The Cognizers 
Innards Mind And Language  8: 4: 487-519
Cleeremans, A. (2014). Connecting conscious and uncon-
scious processing. Cognitive Science, 38(6), 1286–1315. 
Doncieux, S. (2015) “Representational redescription: the 
next challenge?” CDS TC Newsletter 12: 
Jo"ly M., and Coricelli G. (2013) Emotional Valence 
and the Free-Energy Principle. PLoS Comput Biol 9(6): 
e1003094. 

Karmilo!-Smith, A. (1992) Beyond Modularity Cambridge, 
MA: MIT Press
Millar, M. and Clark, A. (Forthcoming) Happily Entangled: 
Prediction, Emotion, and the Embodied Mind Synthese
Oudeyer, P-Y. and Smith. L. (2016) How Evolution may 
work through Curiosity-driven Developmental Process 
Topics in Cognitive Science, 1-11.
Pezzulo, G., Rigoli, F., & Friston, K. (2015). Active Inference, 
homeostatic regulation and adaptive behavioural control. 
Progress in Neurobiology, 134, 17–35.

We are largely in agreement with Tani’s 
approach to developmental robotics as eluci-
dated in this dialog and his recent book. The 
basic assumptions inherent in his approach, 
such as that agents are embodied in the world 
and that neural systems are capable of com-
plex learning, are now established wisdom. 
Although this has been a relatively recent 
shift in AI and Cognitive Science, we consider 
these underlying assumptions to be a given 
and thus do not address them further. Here 
we expand on Tani’s questions and offer a 
broader set of principles for guiding develop-
mental robotics research.

The learning system should be capable of 
taking advantage of the world’s structure 
and continuity.
For any specific learning algorithm, there will 
always be some types of problems that can-
not be easily learned. Thus one should choose 
a learning method that best matches the 
domain. Our world is a highly structured and 
largely continuous environment through time 
and space. Because of these regularities, we 
should use those learning systems that can 
exploit the gradients between similar situa-
tions. Gradient descent procedures, such as 
backpropagation, are well suited for domains 

of this type. 

In addition, an embodied agent moving 
through the real world typically needs to exe-
cute a sequence of actions in order to achieve 
its current goal or plan. Recurrent neural net-
works are able to construct representations 
of sequential memory using gradient descent 
procedures. Thus, Tani’s approach of using 
BPTT applied to a recurrent neural system 
clearly meets our guidelines. However, we do 
not want to commit to any particular architec-
ture or technique, even though we use very 
similar implementations in our own research.

Intrinsic motivation and the ability to make 
predictions and abstractions should be 
innate.
Developmental robotic agents are confronted 
by a dynamically changing and immensely 
complex world, which is only partially pre-
dictable. An agent’s sensory systems provide 
a ceaseless flood of multimodal information 
about the surrounding environment. Initially, 
a robotic agent has no understanding of the 
relationship between its sensors and the 
world, nor how its actions affect its sen-
sors. Intrinsic motivation imbues the robot 
with curiosity and a desire to learn, which 

A Developmental Robotics Manifesto

Douglas Blank

Computer Science Dept.
Bryn Mawr College, 
Pennsylvania, USA

Douglas Blank,
James Marshall,
Lisa Meeden

http://www.x-spect.org
http://www.x-spect.org
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James Marshall

Computer Science Dept.
Sarah Lawrence College, 
New York, USA

guides the robot in seeking out a low-level 
understanding of itself. At this stage, moment-
to-moment sensory predictions about the 
outcomes of actions drive the robot to make 
low-level abstractions. Even though the sys-
tem will never be able to perfectly predict the 
world, attempting to predict it will generate an 
error signal that gives the robot useful infor-
mation.  This information can be exploited in 
a variety of ways, for example to measure 
learning progress, to trigger attention, or to 
recognize sources of variability, which could 
include other agents.

Intelligence emerges through bottom-up and 
top-down interactions.
Once the robot has developed a bottom-up 
understanding of how its sensors and 
actions interact, and has created low-level 
abstractions based on this understand-
ing, higher-order predictions and chunked 
abstractions can emerge.  To be useful, mean-
ing must be extracted from the sensory 
stream, in a continuous process that filters 
out enormous amounts of noisy, extraneous, 
redundant, or irrelevant information, depend-
ing on the situation at hand, and a coherent, 
abstract interpretation of the situation must 
be constructed. 

This abstract interpretation can be boot-
strapped from the knowledge gained at the 
lower levels.  First, a higher level would learn 
to predict the sequence of states that occur at 
a lower level, leading to the development of its 
own higher-level abstractions.  We note that 
these higher-level abstractions can be much 

more sophisticated than merely predicting 
one’s own sensor readings. For example, a 
system could compare possible future action 
sequences in a type of counterfactual explora-
tion. A higher level could then manipulate the 
sequence of states at the lower lever in order 
to achieve a chosen goal.

This process proceeds simultaneously on 
many levels of abstraction, and gradually, 
through development, becomes ever more 
efficient over the lifetime of the agent, as 
its knowledge of the world increases and it 
learns to better exploit that knowledge in pur-
suit of its goals. 

We believe that continual, sustained, and 
interacting pressures will be necessary to 
create a system of lifelong learning. Over time, 
such an emergent, self-ratcheting system will 
have the potential to achieve robust levels of 
intelligent behavior in dynamic, unpredictable 
environments. 

Conclusions
Returning to Tani’s primary questions: we 
see predictive coding as essential; BPTT as 
a promising approach, though not essential; 
staged development as emergent; and fore-
see that by following the philosophy outlined 
above, robots could one day be conscious. We 
believe that Tani’s work is a valuable contri-
bution to better understanding the potential of 
developmental robotics, and, if combined with 
self-motivation and self-ratcheting pressures, 
is firmly in line with our manifesto.

Lisa Meeden

Computer Science Dept.
Swarthmore College, 
Pennsylvania, USA

Cognitive development can be studied from 
di"erent perspectives, may it be, for instance, 
dynamic systems or Bayesian learning 
(Newcombe, 2013). Connectionism is one of 
them and follows the empiricist perspective of 
Locke in which the baby starts its development 
with very little knowledge (’tabula rasa’) and 
builds itself through his interaction with the 
environment. It leads to a notion that is fun-
damental for such approaches: emergence.
After interaction, new features, may they be 
functions or representations, are expected to 
appear in the system whereas they were not 
built in it initially. Emergence is a structuring 
principle of the connectionist view of devel-
opment. It frames the discussions and has a 
significant impact on the approaches that are 
considered and those that are avoided. Tani’s 
work fits in the connectionnist view of cogni-
tion and his questions need to be placed in this 
particular context.

Predictive coding is a theory proposed to rec-
oncile bottom-up and top-down approaches 
Tani (2016). In this framework, predictions are 
made to give a meaning to the complexity of 
the perceptions. The discrepancies between 
the two can drive a learning process towards 
a better matching. It is clearly not a paradigm 
shift in general, as many approaches rely on 
models to predict the e"ect of actions, mod-
el-based reinforcement learning, for instance 
Kaelbling et al. (1996). From a neuroscience 
point of view, the brain itself is known for 
long to be a prediction machine (Bubic et al. , 
2010). If predictive coding is a paradigm shift, 
it is then from the perspective of the emer-
gent paradigm of connectionism as used in 
robotics.

Staged development allows to progressively 
acquire information and bootstrap new 
capabilities when the required knowledge 
has been built. According to Piaget and to 

The Challenges and Pitfalls of Emergence in Developmental 
Robotics

ISIR, UPMC, 
Paris, France

Stephane Doncieux
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the other constructivists, this is an import-
ant feature of human development. As Tani 
asks, is it essential for a robot to develop? 
It is hard to demonstrate, but this approach 
has an important methodological advantage: 
it allows to decompose the developmental 
process and study it piece by piece. It raises 
anyway some challenges for a purely connec-
tionnist approach focused on emergence. How 
would the di"erent stages emerge and struc-
ture themselves in a large neural network?
These questions actually raise a critical chal-
lenge with respect to a connectionist view of 
development in robotics: the challenge of the 
methodology to follow to answer such ques-
tions. Contrary to what happens in nature, a 
scientist working in this field has motivations. 
They are of two di"erent kinds: helping under-
stand how the brain works or building robots 
with new capabilities. In both cases, research-
ers are expecting their robot, may it be real 
or simulated, to behave in a certain way 
after a certain amount of computation that 
is bounded by their computational resources 
and the time they spend on the study. These 
expectations are important and required to 
get a work worth to be published. It is hard 
to avoid as these expectations will drive the 
choice of the tools to use to analyse the sys-
tem. These tools will drive the design, allow 
to fix bugs and compare robot’s behavior to 
biological data for a neuroscience work or to 
alternative approaches for a robotics work. 

These methods make it hard to deal with 
emergence of unexpected features, as the 
researcher would not know what to measure 
or look at. Routine work in this field deals then 
with expected emergence, i.e. emergence of 
features that are explicitly looked for by the 
researcher. If the features are not known, the 
only possible method is serendipity. Beyond 
serendipity, can emergence of development 
be intentionnally studied? What are the inter-
mediate steps? How to build a neural network 
that would make them emerge? What theory 
can drive this work? What methodology can 
be used? How to be sure that the interme-
diate steps chosen are the right ones? Does 
the choice of the intermediate steps not go 
against the principles of emergence?

If the recent progresses of deep learning show 
that neural networks are powerful machine 
learning tools, they are still used in a single 
and well identified learning process. Going 
one step further and developing a connection-
nist approach to development requires either 
to, at least partially, abandon emergence and 
turn to hybrid approaches, in which neural 
networks are black box modules used in a 
modular, Fodorian architecture or to develop a 
methodology that would reconcile emergence 
with researchers’ work. The question is then 
do we really want to keep emergence and, if 
the answer is yes, how?

Andreja Bubic, D. Yves Von Cramon, and Ricarda 
Schubotz. Prediction, cognition and the brain. Frontiers 
in Human Neuroscience, 4:25, 2010. ISSN 1662-5161. doi: 
10.3389/fnhum.2010.00025. URL http://journal.frontier-
sin.org/article/10.3389/fnhum.2010.00025.
Leslie Pack Kaelbling, Michael L Littman, and Andrew 
W Moore. Reinforcement learning: A survey. Journal of 

artificial intelligence research, 4:237–285, 1996.
Nora S Newcombe. Cognitive development: changing 
views of cognitive change. Wiley Interdisciplinary Reviews: 
Cognitive Science, 4(5):479–491, 2013.
Jun Tani. Exploring robotic minds: actions, symbols, and 
consciousness as self-organizing dynamic phenomena. 
Oxford University Press, 2016.

Predictive Processing (PP) and the closely 
related Free Energy Principle (FEP) foster an 
increasingly popular perspective on the mind, 
promising to integrate various theories from 
neuroscience, cognitive science, and philoso-
phy (Butz et al., 2003; Butz, 2008; Clark, 2016; 
Friston, 2010; Friston et al., 2016; Pezzulo et 
al., 2015, 2008). In this respect, Tani’s book is 
timely and intriguing: it reports the results of 
an ambitious research program, which applied 
a dynamical systems approach implemented 
in recurrent neural networks (RNNs) to robot-
ics for 20 years. From our research we would 
like to raise three points that seem to be criti-
cal to succeed in the open-ended development 
of truly autonomous, artificial systems.

Balancing exploration and exploitation. FEP 
suggests that both epistemic drives (active 

information gathering) and goal achieve-
ment may stem from a unique imperative, i.e., 
reducing (anticipated) free energy. FEP was 
shown to enable balancing these generally 
competitive drives, for example, by noticing 
that in conditions of uncertainty it is better 
to first pursue epistemic drives (reducing 
uncertainty in the relevant task dimensions) 
before extrinsic (utilitarian) goals can be pur-
sued (Butz and Kutter, 2017; Friston et al., 
2015), although successful applications to 
complex scenarios are still pending. Tani’s 
approaches either rely on chance induced 
by chaotic dynamics or on teacher-based 
demonstrations. Thus, the open challenge 
remains to build scalable, autonomous 
systems that are able to properly balance 
exploration and exploitation across devel-
opment, possibly supported by (genetically) 

Predictive Processing in Developmental Robotics: 
Three Challenges

Giovanni Pezzulo,
Martin Butz
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pre-determined developmental pathways and 
tendencies towards curiosity and epistemic 
actions (Baldassarre and Mirolli, 2013; Butz 
and Kutter, 2017; Donnarumma et al., 2017; 
Oudeyer et al., 2007; Pezzulo et al., 2016; 
Schmidhuber, 1991).

Inductive biases for learning generative 
models. From a developmental perspective, a 
further open problem is how to guide the con-
struction of increasingly more sophisticated, 
abstract generative models, such as object 
models or object concepts (e.g. a “container”), 
that build upon sensory and motor signals. At 
the moment, Tani’s recurrent neural networks 
have a predetermined hierarchical structure, 
partially including di"erent temporal resolu-
tions; but mechanisms for inferring structure 
automatically during development would be 
desirable. One example method may be an 
event-segmentation bias, which can be based 
on lasting, significant changes in the active 
predictive encodings. This bias may be the key 
to foster progressive abstractions of genera-
tive models into suitable, behavior-oriented, 
hierarchical event taxonomies (Butz, 2016, 
2017). Additionally, factorization approaches 
(which are also employed by Tani’s ANNs 
with parametric biases) may allow the “split-
ting” of generative models into manageable, 
meaningful encodings (e.g. where, what, and 

when) (Butz, 2016, 2017; Verschure, et al., 
2014). The involvement of inductive biases 
into dynamical ANNs or FEP-related systems 
seems to be essential to enable scalable sys-
tem development in real-world, open-ended 
environments. 

Exploiting embodiment. Tani’s models are 
embodied in the sense that they were applied 
and developed in real robots. The robot bodies 
and the addressed tasks were selected to be 
compatible. Thus, the applicability of the cho-
sen techniques in open-ended developmental 
system remains as a critical challenge. Seeing 
that a manifold of examples exists, showing 
that embodiment can significantly facilitate 
and bootstrap cognitive development, includ-
ing inferential abstraction (Butz and Kutter, 
2017), an important challenge for the future is 
to extend Tani’s approach and FEP to combine 
“the best of two words”, that is, embodied and 
hierarchical cognitive inference.

Thus, while Tani’s work sets a milestone 
in the development of truly autonomous 
systems, there is still a long way to go. We 
believe that the integration of considerations 
of embodiment, inductive biases, and balanc-
ing exploration and exploitation within the 
general framework of PP-based robotics will 
be critical for success. 
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A novel analogy is taking hold in theoretical 
neuroscience: “Prediction is to brain as diges-
tion is to stomach.” This analogy, provocative 
as it is, expresses the essence of what has 
become known as the Predictive Processing 
account (Clark, 2015). According to this 
account, the brain is essentially “a sophisti-
cated hypothesis-testing mechanism, which is 
constantly involved in minimizing the error of 
its prediction of the sensory input it receives of 
the world” (Hohwy, 2013, p.1). Using genera-
tive internal models the brain predicts its own 
inputs in a cascading hierarchy of increasingly 
complex hypotheses about hidden states of 
the world. The part of the inputs that could 
not be correctly predicted (viz., the prediction 
error) is used to update the hypotheses to 
eventually maximize the accuracy of the inter-
nal models (Friston, 2010).  Notwithstanding 
its empirical and theoretical successes for 
explaining the adult brain (Brown et al., 2011; 
Seth, 2013; van Pelt et al., 2016) the Predictive 
Processing account is lacking one key ingre-
dient: A coherent and consistent explanation 
of how generative models that allow for mak-
ing predictions are formed and improved in 
development. 

Although some evidence point at the early 
predictive architecture of the human brain 
(Emberson et al., 2015; Kouider et al., 2015), 
there are still open issues when considering 
whether Predictive Processing account can 
explain development. How do infants use pre-
diction errors to generate and refine models? 
How do prediction error minimization account 
for the innovative, creative part of learning: 
forming new concepts and associations and 
enriching existing models with contextual 
dependencies? Can individual di"erences in 
infant learning be explained in terms of dif-
ferent parameters or strategies in prediction 
error minimization?

Despite big questions, some concepts in 
the framework might be tailored to explain 
infant development. For example, although, 
mathematically, minimizing free energy is 
equivalent to maximizing the accuracy of 
the models (Friston et al., 2016), one would 
argue that the latter better describes infant 
behavior. Observing natural infant locomotion 
would simply speak for this argument. Infants 
around 12 to 19-months take 2367.6 steps 
and fall 17.4 times per hour (Adolph et al., 
2012). One would wonder why infants would 
repeatedly try to take steps, as each try would 
presumably elicit prediction errors, perhaps, 
until they master the skill. However, if the 
behavior were driven by the goal of maximiz-
ing the accuracy of the internal models, this 
would potentially better explain what drives 
infants’ behavior. Relatedly, exploration and 
curiosity, which are known to be crucial to 
infant learning and development (Oudeyer & 
Smith, 2016), might also be addressed by the 
aim of maximizing the accuracy of the world 
models. 

Future directions
Providing theoretical, empirical, and com-
putational evidence on whether and how 
the Predictive Processing framework could 
explain infant learning and development 
would pave the way to a novel and interdis-
ciplinary research genre, drawing upon the 
joint experience of theoretical neuroscientists, 
developmental roboticists, and developmen-
tal researchers. Not only would such research 
inform developmental scientists to under-
stand infant behavior and brain function, but 
also it will enrich the Predictive Processing 
framework to explain how generative models 
are developed, which is currently underspec-
ified in the framework. Among others, these 
important questions are awaiting answers in 
the future. 
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Jun Tani touches on many intriguing points. 
I will focus on three of my favourite; namely: 
generative models of the future, hierarchical 
inference and the poverty of stimulus chal-
lenge. Before expanding on his observations, 
I want to set the scene for this focus:

I fully concur with Jun that hierarchical infer-
ence under generative models—implicit in 
predictive coding—is the way forward in 
developmental neurorobotics, and perhaps 
generalised artificial intelligence. However, 
predictive coding, in and of itself, is only part 
of the story. One could argue that any recog-
nition scheme that uses back propagation 
of prediction errors falls under the rubric 
of predictive coding (e.g., hierarchal or deep 
convolution networks). However, the recog-
nition problem is almost trivial in relation to 
the problem faced by neurorobotics. The real 
problem is not how to recognise the causes 
of sensor data but how to select the data that 
best discloses its causes. In my world, this is 
referred to as active inference (Friston et al., 
2015); namely, the bilateral use of action and 
perception to navigate an uncertain world. 
In short, active (hierarchical Bayesian) infer-
ence may entail predictive coding but not vice 
versa.

Predicting the future
If one puts action into the mix, a whole world 
of ‘planning as inference’ emerges (Attias, 
2003; Botvinick and Toussaint, 2012; Mirza 
et al., 2016); which begs the question; “how 
do we do predictive coding of the future”? 
If one subscribes to generative modelling, 
the answer is clear: one has to have gener-
ative models of the future. This is becoming 
increasingly clear in theoretical neuroscience, 
where epistemic behaviour is a natural con-
sequence of Bayesian inference, under prior 
beliefs about the consequences of action 
(Friston et al., 2015). Furthermore, several 
nice devices present themselves for use in 
robotics. For example, one can cast a policy 
selection as Bayesian model selection (based 
upon the marginal likelihoods of policies that 
treat future outcomes as hidden states). This 
has the fundamental advantage of covering 
epistemics and intrinsic motivation (Oudeyer 
and Kaplan, 2007); namely, behaving in a 

way that reduces uncertainty through sam-
pling salient sensory cues—or engaging in 
novel behaviours to discover “what happens 
if I do this” (Schmidhuber, 2006). In brief, the 
minimisation of expected free energy or max-
imisation of expected model evidence leads 
naturally to self-organisation and self-evi-
dencing (Hohwy, 2016). In short:

“Robots based on just sensorimotor map-
ping schemes cannot achieve human level 
thinking because they should be much more 
proactive towards the future.”

Temporal thickness and counterfactual depth
The second theme follows naturally from 
models that generate future outcomes—
that necessarily entail deep or hierarchical 
structure. These models induce a separa-
tion of timescales in the ensuing recognition 
dynamics (Tani et al., 2004), which speaks 
to the temporal thickness or counterfactual 
depth of representations that drive epistemic 
behaviour (Seth, 2014). In virtue of the fact 
that all hierarchal inference involves belief 
propagation (i.e. variational message pass-
ing), it seems obvious to me that the use of 
a recurrent neural network is necessary—
because the message passing required in 
belief propagation cannot, by definition, be 
reduced to:

“A system composed of patchy assemblies of 
di!erent computational schemes.”

Big data or big ideas?
A generative model that entertains di"erent 
hypotheses about unfolding dynamics also 
speaks to the “poverty of stimulus” problem. 
I wholeheartedly agree with Jun that current 
trends towards big data and deep learning 
are heading in the wrong direction. To simu-
late epistemic foraging in sentient robots, we 
need to understand how they make inferences 
to the best explanation through a process of 
abduction and active inference. In other words, 
how can the implicit hypotheses and models 
entertained by a robot make use of sparse—if 
carefully sampled—data. In neuroscience, this 
is akin to trying to understand the fundamen-
tal nature of insight and aha moments. If we 
can formalise and reproduce this in robots I 
suspect that the poverty of stimulus problem 
will be rapidly dissolved. 
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Thanks to all for the inspiring dialog. My brief 
response will focus on two themes. One con-
cerns the role of meta-priors for bridging 
the gap between deterministic and probabi-
listic processing within the predictive coding 
framework. The other concerns development 
in terms of co-emergent phenomena.

Friston focuses on solving the “poverty of 
stimulus” and related problems, noting that 
active (hierarchical Bayesian) inference may 
entail predictive coding, but not vice versa. 
Clark notes that precision-weighting reflects 
the self-estimated reliability of specific pre-
diction error signals for a given task in a 
given context. These comments are exactly 
right. Prior predictive coding RNNs based 
on deterministic dynamic systems a"orded 
neither active Bayesian inference nor preci-
sion estimation in prediction. We have been 
bridging deterministic and probabilistic 
predictive coding using variational Bayes 
RNNs (Murata et al., 2015; Ahmadi and Tani, 
2017). Ahmadi and Tani (2017) proposes the 
variational Bayes predictive coding MTRNN 
(VBP-MTRNN) characterized by maximiz-
ing the lower bound (negative free energy) 
represented by a weighted sum of the regu-
larization term (which becomes larger when 
the posterior distribution of the latent variable 
becomes closer to its prior (given as a normal 
distribution))—and the likelihood term (which 
becomes larger by minimizing the recon-
struction error). Summarily, this weighting 
plays the role of a meta-prior determining 
the quality of learned structures, affecting 
the learning of fluctuated temporal patterns. 
Heavy weighting of the regularization term 
causes the development of stochastic dynam-
ics imitating probabilistic processes observed 
in target patterns and also makes active infer-
ence less e"ective because error propagates 
only weakly. On the other hand, simulations 
show that heavy weighting of the likelihood 
term causes the development of deterministic 
chaos for imitating the randomness observed 
in target sequences, resulting in rote learn-
ing according to the strong top-down prior. It 
was found that generalization in learning can 
be maximized between these two extremes. 
Crucially, in this work we see that as pre-
dictive coding models have developed from 
1st order prediction, 2nd order (precision 
prediction), and to 3rd order including the 
meta-prior discussed here. It is noted that, 
whatever higher-order the system seeks, the 
settings of priors or meta-priors determine 
behavior so long as the Bayesian framework 
is used. 

The simulations above may a"ord insight into 

the mechanisms underlying autism spectrum 
disorders (ASD). Van de Cruys et al (2014) 
have suggested that ASD might be caused by 
overly strong top-down prior potentiation to 
minimize prediction error, which can enhance 
capacities for rote learning while losing 
the capacity to generalize what is learned, 
a pathology typical of ASD. The proposed 
model naturally reflects such pathology with 
the likelihood weighted above a threshold. 
Furthermore, this model may a"ord insight 
into mechanisms underlying spontaneous 
or free action. The meta-prior arbitrates 
between deterministic chaos and externally 
sampled noise in the generation of action. 
Arbitration by such a meta-prior at each level 
in the hierarchy may thus be involved in bal-
ancing homeostatic control in the lower level 
with goal-directed control in the higher level 
(Pezzulo et al., 2015). 

Next, let’s consider how robotic experiments 
using predictive coding or free energy minimi-
zation help to understand infant development. 
There is a mix of optimism and pessimism 
on this issue. Most commentators consider 
curiosity-driven exploration in terms of min-
imizing prediction error with maximal slope 
(e.g., Butz and Kutter, 2017; Marshall et al., 
2004; Oudeyer and Smith, 2016) to be one 
way to stage development from easy to dif-
ficult. If this mechanism is implemented in 
the aforementioned VBP-MTRNN, the balanc-
ing between more probabilistic exploration 
and more deterministic exploitation might 
be arbitrated by the meta-prior value of the 
weighting. Then, the question again arises - 
How to modulate this meta-prior in the course 
of development? 

As recent neuroscience studies suggest, 
critical periods in development arise due 
to interactions between innate structures 
and epigenetic experiences, and cannot be 
explained with just “two words”—embodi-
ment and hierarchical inference. For example, 
Takesian and Hensch (2013) suggest that the 
onset of the critical period in visual cortex 
development is determined by the maturation 
of specific GABA circuits balancing excitatory 
and inhibitory neural activity, whereas molec-
ular “brakes” (often extracellular) close this 
window and limit further “rewiring”. A third 
term is necessary, innate structure.

How might we understand the developmen-
tal process systematically, in terms of a 
triplet interaction between innate structure, 
embodiment, and hierarchical cognitive infer-
ence? One proposal is to conduct synthetic 
experiments scaled up to the evolution of 
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genomes over generations of neuronal learn-
ing as implemented in hundreds of interacting 
robots, in which evolving genomes provide 
contextual parametric constraints on neural 
structures and their functions during develop-
ment. Meta-priors contextually regulating the 
developmental process—autonomously bal-
ancing between exploration and exploitation, 

shifting from homeostatic control in earlier 
stages to goal-directed control in later stages, 
or starting and closing of critical period for 
each modality—may emerge through this 
triplet interaction, and in this way we may 
investigate—what Friston calls—“the funda-
mental nature of insight and aha moments”.


